Evaluate
\frac{\sqrt{36894726406}}{38416}+18700\approx 18705
Share
Copied to clipboard
18700+\sqrt{25+\frac{6}{14^{2^{3}}}}
Multiply 748 and 25 to get 18700.
18700+\sqrt{25+\frac{6}{14^{8}}}
Calculate 2 to the power of 3 and get 8.
18700+\sqrt{25+\frac{6}{1475789056}}
Calculate 14 to the power of 8 and get 1475789056.
18700+\sqrt{25+\frac{3}{737894528}}
Reduce the fraction \frac{6}{1475789056} to lowest terms by extracting and canceling out 2.
18700+\sqrt{\frac{18447363203}{737894528}}
Add 25 and \frac{3}{737894528} to get \frac{18447363203}{737894528}.
18700+\frac{\sqrt{18447363203}}{\sqrt{737894528}}
Rewrite the square root of the division \sqrt{\frac{18447363203}{737894528}} as the division of square roots \frac{\sqrt{18447363203}}{\sqrt{737894528}}.
18700+\frac{\sqrt{18447363203}}{19208\sqrt{2}}
Factor 737894528=19208^{2}\times 2. Rewrite the square root of the product \sqrt{19208^{2}\times 2} as the product of square roots \sqrt{19208^{2}}\sqrt{2}. Take the square root of 19208^{2}.
18700+\frac{\sqrt{18447363203}\sqrt{2}}{19208\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{18447363203}}{19208\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
18700+\frac{\sqrt{18447363203}\sqrt{2}}{19208\times 2}
The square of \sqrt{2} is 2.
18700+\frac{\sqrt{36894726406}}{19208\times 2}
To multiply \sqrt{18447363203} and \sqrt{2}, multiply the numbers under the square root.
18700+\frac{\sqrt{36894726406}}{38416}
Multiply 19208 and 2 to get 38416.
\frac{18700\times 38416}{38416}+\frac{\sqrt{36894726406}}{38416}
To add or subtract expressions, expand them to make their denominators the same. Multiply 18700 times \frac{38416}{38416}.
\frac{18700\times 38416+\sqrt{36894726406}}{38416}
Since \frac{18700\times 38416}{38416} and \frac{\sqrt{36894726406}}{38416} have the same denominator, add them by adding their numerators.
\frac{718379200+\sqrt{36894726406}}{38416}
Do the multiplications in 18700\times 38416+\sqrt{36894726406}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}