Skip to main content
Evaluate
Tick mark Image

Share

18700+\sqrt{25+\frac{6}{14^{2^{3}}}}
Multiply 748 and 25 to get 18700.
18700+\sqrt{25+\frac{6}{14^{8}}}
Calculate 2 to the power of 3 and get 8.
18700+\sqrt{25+\frac{6}{1475789056}}
Calculate 14 to the power of 8 and get 1475789056.
18700+\sqrt{25+\frac{3}{737894528}}
Reduce the fraction \frac{6}{1475789056} to lowest terms by extracting and canceling out 2.
18700+\sqrt{\frac{18447363203}{737894528}}
Add 25 and \frac{3}{737894528} to get \frac{18447363203}{737894528}.
18700+\frac{\sqrt{18447363203}}{\sqrt{737894528}}
Rewrite the square root of the division \sqrt{\frac{18447363203}{737894528}} as the division of square roots \frac{\sqrt{18447363203}}{\sqrt{737894528}}.
18700+\frac{\sqrt{18447363203}}{19208\sqrt{2}}
Factor 737894528=19208^{2}\times 2. Rewrite the square root of the product \sqrt{19208^{2}\times 2} as the product of square roots \sqrt{19208^{2}}\sqrt{2}. Take the square root of 19208^{2}.
18700+\frac{\sqrt{18447363203}\sqrt{2}}{19208\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{18447363203}}{19208\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
18700+\frac{\sqrt{18447363203}\sqrt{2}}{19208\times 2}
The square of \sqrt{2} is 2.
18700+\frac{\sqrt{36894726406}}{19208\times 2}
To multiply \sqrt{18447363203} and \sqrt{2}, multiply the numbers under the square root.
18700+\frac{\sqrt{36894726406}}{38416}
Multiply 19208 and 2 to get 38416.
\frac{18700\times 38416}{38416}+\frac{\sqrt{36894726406}}{38416}
To add or subtract expressions, expand them to make their denominators the same. Multiply 18700 times \frac{38416}{38416}.
\frac{18700\times 38416+\sqrt{36894726406}}{38416}
Since \frac{18700\times 38416}{38416} and \frac{\sqrt{36894726406}}{38416} have the same denominator, add them by adding their numerators.
\frac{718379200+\sqrt{36894726406}}{38416}
Do the multiplications in 18700\times 38416+\sqrt{36894726406}.