Evaluate
\frac{49}{24}\approx 2.041666667
Factor
\frac{7 ^ {2}}{2 ^ {3} \cdot 3} = 2\frac{1}{24} = 2.0416666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)735}\\\end{array}
Use the 1^{st} digit 7 from dividend 735
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)735}\\\end{array}
Since 7 is less than 360, use the next digit 3 from dividend 735 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)735}\\\end{array}
Use the 2^{nd} digit 3 from dividend 735
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)735}\\\end{array}
Since 73 is less than 360, use the next digit 5 from dividend 735 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)735}\\\end{array}
Use the 3^{rd} digit 5 from dividend 735
\begin{array}{l}\phantom{360)}002\phantom{6}\\360\overline{)735}\\\phantom{360)}\underline{\phantom{}720\phantom{}}\\\phantom{360)9}15\\\end{array}
Find closest multiple of 360 to 735. We see that 2 \times 360 = 720 is the nearest. Now subtract 720 from 735 to get reminder 15. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }15
Since 15 is less than 360, stop the division. The reminder is 15. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}