Evaluate
\frac{244}{15}\approx 16.266666667
Factor
\frac{2 ^ {2} \cdot 61}{3 \cdot 5} = 16\frac{4}{15} = 16.266666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)732}\\\end{array}
Use the 1^{st} digit 7 from dividend 732
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)732}\\\end{array}
Since 7 is less than 45, use the next digit 3 from dividend 732 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)732}\\\end{array}
Use the 2^{nd} digit 3 from dividend 732
\begin{array}{l}\phantom{45)}01\phantom{4}\\45\overline{)732}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}28\\\end{array}
Find closest multiple of 45 to 73. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 73 to get reminder 28. Add 1 to quotient.
\begin{array}{l}\phantom{45)}01\phantom{5}\\45\overline{)732}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}282\\\end{array}
Use the 3^{rd} digit 2 from dividend 732
\begin{array}{l}\phantom{45)}016\phantom{6}\\45\overline{)732}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}282\\\phantom{45)}\underline{\phantom{}270\phantom{}}\\\phantom{45)9}12\\\end{array}
Find closest multiple of 45 to 282. We see that 6 \times 45 = 270 is the nearest. Now subtract 270 from 282 to get reminder 12. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }12
Since 12 is less than 45, stop the division. The reminder is 12. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}