Evaluate
\frac{14600}{3}\approx 4866.666666667
Factor
\frac{2 ^ {3} \cdot 5 ^ {2} \cdot 73}{3} = 4866\frac{2}{3} = 4866.666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{150)}\phantom{1}\\150\overline{)730000}\\\end{array}
Use the 1^{st} digit 7 from dividend 730000
\begin{array}{l}\phantom{150)}0\phantom{2}\\150\overline{)730000}\\\end{array}
Since 7 is less than 150, use the next digit 3 from dividend 730000 and add 0 to the quotient
\begin{array}{l}\phantom{150)}0\phantom{3}\\150\overline{)730000}\\\end{array}
Use the 2^{nd} digit 3 from dividend 730000
\begin{array}{l}\phantom{150)}00\phantom{4}\\150\overline{)730000}\\\end{array}
Since 73 is less than 150, use the next digit 0 from dividend 730000 and add 0 to the quotient
\begin{array}{l}\phantom{150)}00\phantom{5}\\150\overline{)730000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 730000
\begin{array}{l}\phantom{150)}004\phantom{6}\\150\overline{)730000}\\\phantom{150)}\underline{\phantom{}600\phantom{999}}\\\phantom{150)}130\\\end{array}
Find closest multiple of 150 to 730. We see that 4 \times 150 = 600 is the nearest. Now subtract 600 from 730 to get reminder 130. Add 4 to quotient.
\begin{array}{l}\phantom{150)}004\phantom{7}\\150\overline{)730000}\\\phantom{150)}\underline{\phantom{}600\phantom{999}}\\\phantom{150)}1300\\\end{array}
Use the 4^{th} digit 0 from dividend 730000
\begin{array}{l}\phantom{150)}0048\phantom{8}\\150\overline{)730000}\\\phantom{150)}\underline{\phantom{}600\phantom{999}}\\\phantom{150)}1300\\\phantom{150)}\underline{\phantom{}1200\phantom{99}}\\\phantom{150)9}100\\\end{array}
Find closest multiple of 150 to 1300. We see that 8 \times 150 = 1200 is the nearest. Now subtract 1200 from 1300 to get reminder 100. Add 8 to quotient.
\begin{array}{l}\phantom{150)}0048\phantom{9}\\150\overline{)730000}\\\phantom{150)}\underline{\phantom{}600\phantom{999}}\\\phantom{150)}1300\\\phantom{150)}\underline{\phantom{}1200\phantom{99}}\\\phantom{150)9}1000\\\end{array}
Use the 5^{th} digit 0 from dividend 730000
\begin{array}{l}\phantom{150)}00486\phantom{10}\\150\overline{)730000}\\\phantom{150)}\underline{\phantom{}600\phantom{999}}\\\phantom{150)}1300\\\phantom{150)}\underline{\phantom{}1200\phantom{99}}\\\phantom{150)9}1000\\\phantom{150)}\underline{\phantom{99}900\phantom{9}}\\\phantom{150)99}100\\\end{array}
Find closest multiple of 150 to 1000. We see that 6 \times 150 = 900 is the nearest. Now subtract 900 from 1000 to get reminder 100. Add 6 to quotient.
\begin{array}{l}\phantom{150)}00486\phantom{11}\\150\overline{)730000}\\\phantom{150)}\underline{\phantom{}600\phantom{999}}\\\phantom{150)}1300\\\phantom{150)}\underline{\phantom{}1200\phantom{99}}\\\phantom{150)9}1000\\\phantom{150)}\underline{\phantom{99}900\phantom{9}}\\\phantom{150)99}1000\\\end{array}
Use the 6^{th} digit 0 from dividend 730000
\begin{array}{l}\phantom{150)}004866\phantom{12}\\150\overline{)730000}\\\phantom{150)}\underline{\phantom{}600\phantom{999}}\\\phantom{150)}1300\\\phantom{150)}\underline{\phantom{}1200\phantom{99}}\\\phantom{150)9}1000\\\phantom{150)}\underline{\phantom{99}900\phantom{9}}\\\phantom{150)99}1000\\\phantom{150)}\underline{\phantom{999}900\phantom{}}\\\phantom{150)999}100\\\end{array}
Find closest multiple of 150 to 1000. We see that 6 \times 150 = 900 is the nearest. Now subtract 900 from 1000 to get reminder 100. Add 6 to quotient.
\text{Quotient: }4866 \text{Reminder: }100
Since 100 is less than 150, stop the division. The reminder is 100. The topmost line 004866 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4866.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}