Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

73x^{2}-234x-447=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-234\right)±\sqrt{\left(-234\right)^{2}-4\times 73\left(-447\right)}}{2\times 73}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 73 for a, -234 for b, and -447 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-234\right)±\sqrt{54756-4\times 73\left(-447\right)}}{2\times 73}
Square -234.
x=\frac{-\left(-234\right)±\sqrt{54756-292\left(-447\right)}}{2\times 73}
Multiply -4 times 73.
x=\frac{-\left(-234\right)±\sqrt{54756+130524}}{2\times 73}
Multiply -292 times -447.
x=\frac{-\left(-234\right)±\sqrt{185280}}{2\times 73}
Add 54756 to 130524.
x=\frac{-\left(-234\right)±8\sqrt{2895}}{2\times 73}
Take the square root of 185280.
x=\frac{234±8\sqrt{2895}}{2\times 73}
The opposite of -234 is 234.
x=\frac{234±8\sqrt{2895}}{146}
Multiply 2 times 73.
x=\frac{8\sqrt{2895}+234}{146}
Now solve the equation x=\frac{234±8\sqrt{2895}}{146} when ± is plus. Add 234 to 8\sqrt{2895}.
x=\frac{4\sqrt{2895}+117}{73}
Divide 234+8\sqrt{2895} by 146.
x=\frac{234-8\sqrt{2895}}{146}
Now solve the equation x=\frac{234±8\sqrt{2895}}{146} when ± is minus. Subtract 8\sqrt{2895} from 234.
x=\frac{117-4\sqrt{2895}}{73}
Divide 234-8\sqrt{2895} by 146.
x=\frac{4\sqrt{2895}+117}{73} x=\frac{117-4\sqrt{2895}}{73}
The equation is now solved.
73x^{2}-234x-447=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
73x^{2}-234x-447-\left(-447\right)=-\left(-447\right)
Add 447 to both sides of the equation.
73x^{2}-234x=-\left(-447\right)
Subtracting -447 from itself leaves 0.
73x^{2}-234x=447
Subtract -447 from 0.
\frac{73x^{2}-234x}{73}=\frac{447}{73}
Divide both sides by 73.
x^{2}-\frac{234}{73}x=\frac{447}{73}
Dividing by 73 undoes the multiplication by 73.
x^{2}-\frac{234}{73}x+\left(-\frac{117}{73}\right)^{2}=\frac{447}{73}+\left(-\frac{117}{73}\right)^{2}
Divide -\frac{234}{73}, the coefficient of the x term, by 2 to get -\frac{117}{73}. Then add the square of -\frac{117}{73} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{234}{73}x+\frac{13689}{5329}=\frac{447}{73}+\frac{13689}{5329}
Square -\frac{117}{73} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{234}{73}x+\frac{13689}{5329}=\frac{46320}{5329}
Add \frac{447}{73} to \frac{13689}{5329} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{117}{73}\right)^{2}=\frac{46320}{5329}
Factor x^{2}-\frac{234}{73}x+\frac{13689}{5329}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{117}{73}\right)^{2}}=\sqrt{\frac{46320}{5329}}
Take the square root of both sides of the equation.
x-\frac{117}{73}=\frac{4\sqrt{2895}}{73} x-\frac{117}{73}=-\frac{4\sqrt{2895}}{73}
Simplify.
x=\frac{4\sqrt{2895}+117}{73} x=\frac{117-4\sqrt{2895}}{73}
Add \frac{117}{73} to both sides of the equation.
x ^ 2 -\frac{234}{73}x -\frac{447}{73} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 73
r + s = \frac{234}{73} rs = -\frac{447}{73}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{117}{73} - u s = \frac{117}{73} + u
Two numbers r and s sum up to \frac{234}{73} exactly when the average of the two numbers is \frac{1}{2}*\frac{234}{73} = \frac{117}{73}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{117}{73} - u) (\frac{117}{73} + u) = -\frac{447}{73}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{447}{73}
\frac{13689}{5329} - u^2 = -\frac{447}{73}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{447}{73}-\frac{13689}{5329} = -\frac{46320}{5329}
Simplify the expression by subtracting \frac{13689}{5329} on both sides
u^2 = \frac{46320}{5329} u = \pm\sqrt{\frac{46320}{5329}} = \pm \frac{\sqrt{46320}}{73}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{117}{73} - \frac{\sqrt{46320}}{73} = -1.345 s = \frac{117}{73} + \frac{\sqrt{46320}}{73} = 4.551
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.