Evaluate
\frac{72346}{51}\approx 1418.549019608
Factor
\frac{2 \cdot 61 \cdot 593}{3 \cdot 17} = 1418\frac{28}{51} = 1418.549019607843
Share
Copied to clipboard
\begin{array}{l}\phantom{51)}\phantom{1}\\51\overline{)72346}\\\end{array}
Use the 1^{st} digit 7 from dividend 72346
\begin{array}{l}\phantom{51)}0\phantom{2}\\51\overline{)72346}\\\end{array}
Since 7 is less than 51, use the next digit 2 from dividend 72346 and add 0 to the quotient
\begin{array}{l}\phantom{51)}0\phantom{3}\\51\overline{)72346}\\\end{array}
Use the 2^{nd} digit 2 from dividend 72346
\begin{array}{l}\phantom{51)}01\phantom{4}\\51\overline{)72346}\\\phantom{51)}\underline{\phantom{}51\phantom{999}}\\\phantom{51)}21\\\end{array}
Find closest multiple of 51 to 72. We see that 1 \times 51 = 51 is the nearest. Now subtract 51 from 72 to get reminder 21. Add 1 to quotient.
\begin{array}{l}\phantom{51)}01\phantom{5}\\51\overline{)72346}\\\phantom{51)}\underline{\phantom{}51\phantom{999}}\\\phantom{51)}213\\\end{array}
Use the 3^{rd} digit 3 from dividend 72346
\begin{array}{l}\phantom{51)}014\phantom{6}\\51\overline{)72346}\\\phantom{51)}\underline{\phantom{}51\phantom{999}}\\\phantom{51)}213\\\phantom{51)}\underline{\phantom{}204\phantom{99}}\\\phantom{51)99}9\\\end{array}
Find closest multiple of 51 to 213. We see that 4 \times 51 = 204 is the nearest. Now subtract 204 from 213 to get reminder 9. Add 4 to quotient.
\begin{array}{l}\phantom{51)}014\phantom{7}\\51\overline{)72346}\\\phantom{51)}\underline{\phantom{}51\phantom{999}}\\\phantom{51)}213\\\phantom{51)}\underline{\phantom{}204\phantom{99}}\\\phantom{51)99}94\\\end{array}
Use the 4^{th} digit 4 from dividend 72346
\begin{array}{l}\phantom{51)}0141\phantom{8}\\51\overline{)72346}\\\phantom{51)}\underline{\phantom{}51\phantom{999}}\\\phantom{51)}213\\\phantom{51)}\underline{\phantom{}204\phantom{99}}\\\phantom{51)99}94\\\phantom{51)}\underline{\phantom{99}51\phantom{9}}\\\phantom{51)99}43\\\end{array}
Find closest multiple of 51 to 94. We see that 1 \times 51 = 51 is the nearest. Now subtract 51 from 94 to get reminder 43. Add 1 to quotient.
\begin{array}{l}\phantom{51)}0141\phantom{9}\\51\overline{)72346}\\\phantom{51)}\underline{\phantom{}51\phantom{999}}\\\phantom{51)}213\\\phantom{51)}\underline{\phantom{}204\phantom{99}}\\\phantom{51)99}94\\\phantom{51)}\underline{\phantom{99}51\phantom{9}}\\\phantom{51)99}436\\\end{array}
Use the 5^{th} digit 6 from dividend 72346
\begin{array}{l}\phantom{51)}01418\phantom{10}\\51\overline{)72346}\\\phantom{51)}\underline{\phantom{}51\phantom{999}}\\\phantom{51)}213\\\phantom{51)}\underline{\phantom{}204\phantom{99}}\\\phantom{51)99}94\\\phantom{51)}\underline{\phantom{99}51\phantom{9}}\\\phantom{51)99}436\\\phantom{51)}\underline{\phantom{99}408\phantom{}}\\\phantom{51)999}28\\\end{array}
Find closest multiple of 51 to 436. We see that 8 \times 51 = 408 is the nearest. Now subtract 408 from 436 to get reminder 28. Add 8 to quotient.
\text{Quotient: }1418 \text{Reminder: }28
Since 28 is less than 51, stop the division. The reminder is 28. The topmost line 01418 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1418.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}