Evaluate
\frac{720}{11}\approx 65.454545455
Factor
\frac{2 ^ {4} \cdot 3 ^ {2} \cdot 5}{11} = 65\frac{5}{11} = 65.45454545454545
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)720}\\\end{array}
Use the 1^{st} digit 7 from dividend 720
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)720}\\\end{array}
Since 7 is less than 11, use the next digit 2 from dividend 720 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)720}\\\end{array}
Use the 2^{nd} digit 2 from dividend 720
\begin{array}{l}\phantom{11)}06\phantom{4}\\11\overline{)720}\\\phantom{11)}\underline{\phantom{}66\phantom{9}}\\\phantom{11)9}6\\\end{array}
Find closest multiple of 11 to 72. We see that 6 \times 11 = 66 is the nearest. Now subtract 66 from 72 to get reminder 6. Add 6 to quotient.
\begin{array}{l}\phantom{11)}06\phantom{5}\\11\overline{)720}\\\phantom{11)}\underline{\phantom{}66\phantom{9}}\\\phantom{11)9}60\\\end{array}
Use the 3^{rd} digit 0 from dividend 720
\begin{array}{l}\phantom{11)}065\phantom{6}\\11\overline{)720}\\\phantom{11)}\underline{\phantom{}66\phantom{9}}\\\phantom{11)9}60\\\phantom{11)}\underline{\phantom{9}55\phantom{}}\\\phantom{11)99}5\\\end{array}
Find closest multiple of 11 to 60. We see that 5 \times 11 = 55 is the nearest. Now subtract 55 from 60 to get reminder 5. Add 5 to quotient.
\text{Quotient: }65 \text{Reminder: }5
Since 5 is less than 11, stop the division. The reminder is 5. The topmost line 065 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 65.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}