Evaluate
48
Factor
2^{4}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)720}\\\end{array}
Use the 1^{st} digit 7 from dividend 720
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)720}\\\end{array}
Since 7 is less than 15, use the next digit 2 from dividend 720 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)720}\\\end{array}
Use the 2^{nd} digit 2 from dividend 720
\begin{array}{l}\phantom{15)}04\phantom{4}\\15\overline{)720}\\\phantom{15)}\underline{\phantom{}60\phantom{9}}\\\phantom{15)}12\\\end{array}
Find closest multiple of 15 to 72. We see that 4 \times 15 = 60 is the nearest. Now subtract 60 from 72 to get reminder 12. Add 4 to quotient.
\begin{array}{l}\phantom{15)}04\phantom{5}\\15\overline{)720}\\\phantom{15)}\underline{\phantom{}60\phantom{9}}\\\phantom{15)}120\\\end{array}
Use the 3^{rd} digit 0 from dividend 720
\begin{array}{l}\phantom{15)}048\phantom{6}\\15\overline{)720}\\\phantom{15)}\underline{\phantom{}60\phantom{9}}\\\phantom{15)}120\\\phantom{15)}\underline{\phantom{}120\phantom{}}\\\phantom{15)999}0\\\end{array}
Find closest multiple of 15 to 120. We see that 8 \times 15 = 120 is the nearest. Now subtract 120 from 120 to get reminder 0. Add 8 to quotient.
\text{Quotient: }48 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 048 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}