Solve for x (complex solution)
x=\frac{5+\sqrt{839}i}{72}\approx 0.069444444+0.402298565i
x=\frac{-\sqrt{839}i+5}{72}\approx 0.069444444-0.402298565i
Graph
Share
Copied to clipboard
72x^{2}-10x=-12
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
72x^{2}-10x-\left(-12\right)=-12-\left(-12\right)
Add 12 to both sides of the equation.
72x^{2}-10x-\left(-12\right)=0
Subtracting -12 from itself leaves 0.
72x^{2}-10x+12=0
Subtract -12 from 0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 72\times 12}}{2\times 72}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 72 for a, -10 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 72\times 12}}{2\times 72}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-288\times 12}}{2\times 72}
Multiply -4 times 72.
x=\frac{-\left(-10\right)±\sqrt{100-3456}}{2\times 72}
Multiply -288 times 12.
x=\frac{-\left(-10\right)±\sqrt{-3356}}{2\times 72}
Add 100 to -3456.
x=\frac{-\left(-10\right)±2\sqrt{839}i}{2\times 72}
Take the square root of -3356.
x=\frac{10±2\sqrt{839}i}{2\times 72}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{839}i}{144}
Multiply 2 times 72.
x=\frac{10+2\sqrt{839}i}{144}
Now solve the equation x=\frac{10±2\sqrt{839}i}{144} when ± is plus. Add 10 to 2i\sqrt{839}.
x=\frac{5+\sqrt{839}i}{72}
Divide 10+2i\sqrt{839} by 144.
x=\frac{-2\sqrt{839}i+10}{144}
Now solve the equation x=\frac{10±2\sqrt{839}i}{144} when ± is minus. Subtract 2i\sqrt{839} from 10.
x=\frac{-\sqrt{839}i+5}{72}
Divide 10-2i\sqrt{839} by 144.
x=\frac{5+\sqrt{839}i}{72} x=\frac{-\sqrt{839}i+5}{72}
The equation is now solved.
72x^{2}-10x=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{72x^{2}-10x}{72}=-\frac{12}{72}
Divide both sides by 72.
x^{2}+\left(-\frac{10}{72}\right)x=-\frac{12}{72}
Dividing by 72 undoes the multiplication by 72.
x^{2}-\frac{5}{36}x=-\frac{12}{72}
Reduce the fraction \frac{-10}{72} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{36}x=-\frac{1}{6}
Reduce the fraction \frac{-12}{72} to lowest terms by extracting and canceling out 12.
x^{2}-\frac{5}{36}x+\left(-\frac{5}{72}\right)^{2}=-\frac{1}{6}+\left(-\frac{5}{72}\right)^{2}
Divide -\frac{5}{36}, the coefficient of the x term, by 2 to get -\frac{5}{72}. Then add the square of -\frac{5}{72} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{36}x+\frac{25}{5184}=-\frac{1}{6}+\frac{25}{5184}
Square -\frac{5}{72} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{36}x+\frac{25}{5184}=-\frac{839}{5184}
Add -\frac{1}{6} to \frac{25}{5184} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{72}\right)^{2}=-\frac{839}{5184}
Factor x^{2}-\frac{5}{36}x+\frac{25}{5184}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{72}\right)^{2}}=\sqrt{-\frac{839}{5184}}
Take the square root of both sides of the equation.
x-\frac{5}{72}=\frac{\sqrt{839}i}{72} x-\frac{5}{72}=-\frac{\sqrt{839}i}{72}
Simplify.
x=\frac{5+\sqrt{839}i}{72} x=\frac{-\sqrt{839}i+5}{72}
Add \frac{5}{72} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}