Solve for x
x=-\frac{z}{2}+\frac{18}{y}
y\neq 0
Solve for y
y=\frac{36}{2x+z}
x\neq -\frac{z}{2}
Share
Copied to clipboard
72=2xy+2zy+2xy
Use the distributive property to multiply 2x+2z by y.
72=4xy+2zy
Combine 2xy and 2xy to get 4xy.
4xy+2zy=72
Swap sides so that all variable terms are on the left hand side.
4xy=72-2zy
Subtract 2zy from both sides.
4yx=72-2yz
The equation is in standard form.
\frac{4yx}{4y}=\frac{72-2yz}{4y}
Divide both sides by 4y.
x=\frac{72-2yz}{4y}
Dividing by 4y undoes the multiplication by 4y.
x=-\frac{z}{2}+\frac{18}{y}
Divide 72-2yz by 4y.
72=2xy+2zy+2xy
Use the distributive property to multiply 2x+2z by y.
72=4xy+2zy
Combine 2xy and 2xy to get 4xy.
4xy+2zy=72
Swap sides so that all variable terms are on the left hand side.
\left(4x+2z\right)y=72
Combine all terms containing y.
\frac{\left(4x+2z\right)y}{4x+2z}=\frac{72}{4x+2z}
Divide both sides by 4x+2z.
y=\frac{72}{4x+2z}
Dividing by 4x+2z undoes the multiplication by 4x+2z.
y=\frac{36}{2x+z}
Divide 72 by 4x+2z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}