Evaluate
\frac{179}{21}\approx 8.523809524
Factor
\frac{179}{3 \cdot 7} = 8\frac{11}{21} = 8.523809523809524
Share
Copied to clipboard
\begin{array}{l}\phantom{84)}\phantom{1}\\84\overline{)716}\\\end{array}
Use the 1^{st} digit 7 from dividend 716
\begin{array}{l}\phantom{84)}0\phantom{2}\\84\overline{)716}\\\end{array}
Since 7 is less than 84, use the next digit 1 from dividend 716 and add 0 to the quotient
\begin{array}{l}\phantom{84)}0\phantom{3}\\84\overline{)716}\\\end{array}
Use the 2^{nd} digit 1 from dividend 716
\begin{array}{l}\phantom{84)}00\phantom{4}\\84\overline{)716}\\\end{array}
Since 71 is less than 84, use the next digit 6 from dividend 716 and add 0 to the quotient
\begin{array}{l}\phantom{84)}00\phantom{5}\\84\overline{)716}\\\end{array}
Use the 3^{rd} digit 6 from dividend 716
\begin{array}{l}\phantom{84)}008\phantom{6}\\84\overline{)716}\\\phantom{84)}\underline{\phantom{}672\phantom{}}\\\phantom{84)9}44\\\end{array}
Find closest multiple of 84 to 716. We see that 8 \times 84 = 672 is the nearest. Now subtract 672 from 716 to get reminder 44. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }44
Since 44 is less than 84, stop the division. The reminder is 44. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}