Evaluate
\frac{1666\sqrt{321}}{963}+711\approx 741.995684109
Share
Copied to clipboard
711+196\times \frac{34}{12\sqrt{321}}
Factor 46224=12^{2}\times 321. Rewrite the square root of the product \sqrt{12^{2}\times 321} as the product of square roots \sqrt{12^{2}}\sqrt{321}. Take the square root of 12^{2}.
711+196\times \frac{34\sqrt{321}}{12\left(\sqrt{321}\right)^{2}}
Rationalize the denominator of \frac{34}{12\sqrt{321}} by multiplying numerator and denominator by \sqrt{321}.
711+196\times \frac{34\sqrt{321}}{12\times 321}
The square of \sqrt{321} is 321.
711+196\times \frac{17\sqrt{321}}{6\times 321}
Cancel out 2 in both numerator and denominator.
711+196\times \frac{17\sqrt{321}}{1926}
Multiply 6 and 321 to get 1926.
711+\frac{196\times 17\sqrt{321}}{1926}
Express 196\times \frac{17\sqrt{321}}{1926} as a single fraction.
\frac{711\times 1926}{1926}+\frac{196\times 17\sqrt{321}}{1926}
To add or subtract expressions, expand them to make their denominators the same. Multiply 711 times \frac{1926}{1926}.
\frac{711\times 1926+196\times 17\sqrt{321}}{1926}
Since \frac{711\times 1926}{1926} and \frac{196\times 17\sqrt{321}}{1926} have the same denominator, add them by adding their numerators.
\frac{1369386+3332\sqrt{321}}{1926}
Do the multiplications in 711\times 1926+196\times 17\sqrt{321}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}