Evaluate
\frac{70}{9}\approx 7.777777778
Factor
\frac{2 \cdot 5 \cdot 7}{3 ^ {2}} = 7\frac{7}{9} = 7.777777777777778
Share
Copied to clipboard
\begin{array}{l}\phantom{90)}\phantom{1}\\90\overline{)700}\\\end{array}
Use the 1^{st} digit 7 from dividend 700
\begin{array}{l}\phantom{90)}0\phantom{2}\\90\overline{)700}\\\end{array}
Since 7 is less than 90, use the next digit 0 from dividend 700 and add 0 to the quotient
\begin{array}{l}\phantom{90)}0\phantom{3}\\90\overline{)700}\\\end{array}
Use the 2^{nd} digit 0 from dividend 700
\begin{array}{l}\phantom{90)}00\phantom{4}\\90\overline{)700}\\\end{array}
Since 70 is less than 90, use the next digit 0 from dividend 700 and add 0 to the quotient
\begin{array}{l}\phantom{90)}00\phantom{5}\\90\overline{)700}\\\end{array}
Use the 3^{rd} digit 0 from dividend 700
\begin{array}{l}\phantom{90)}007\phantom{6}\\90\overline{)700}\\\phantom{90)}\underline{\phantom{}630\phantom{}}\\\phantom{90)9}70\\\end{array}
Find closest multiple of 90 to 700. We see that 7 \times 90 = 630 is the nearest. Now subtract 630 from 700 to get reminder 70. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }70
Since 70 is less than 90, stop the division. The reminder is 70. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}