Evaluate
\frac{350}{31}\approx 11.290322581
Factor
\frac{2 \cdot 5 ^ {2} \cdot 7}{31} = 11\frac{9}{31} = 11.290322580645162
Share
Copied to clipboard
\begin{array}{l}\phantom{62)}\phantom{1}\\62\overline{)700}\\\end{array}
Use the 1^{st} digit 7 from dividend 700
\begin{array}{l}\phantom{62)}0\phantom{2}\\62\overline{)700}\\\end{array}
Since 7 is less than 62, use the next digit 0 from dividend 700 and add 0 to the quotient
\begin{array}{l}\phantom{62)}0\phantom{3}\\62\overline{)700}\\\end{array}
Use the 2^{nd} digit 0 from dividend 700
\begin{array}{l}\phantom{62)}01\phantom{4}\\62\overline{)700}\\\phantom{62)}\underline{\phantom{}62\phantom{9}}\\\phantom{62)9}8\\\end{array}
Find closest multiple of 62 to 70. We see that 1 \times 62 = 62 is the nearest. Now subtract 62 from 70 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{62)}01\phantom{5}\\62\overline{)700}\\\phantom{62)}\underline{\phantom{}62\phantom{9}}\\\phantom{62)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 700
\begin{array}{l}\phantom{62)}011\phantom{6}\\62\overline{)700}\\\phantom{62)}\underline{\phantom{}62\phantom{9}}\\\phantom{62)9}80\\\phantom{62)}\underline{\phantom{9}62\phantom{}}\\\phantom{62)9}18\\\end{array}
Find closest multiple of 62 to 80. We see that 1 \times 62 = 62 is the nearest. Now subtract 62 from 80 to get reminder 18. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }18
Since 18 is less than 62, stop the division. The reminder is 18. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}