Evaluate
\frac{14}{9}\approx 1.555555556
Factor
\frac{2 \cdot 7}{3 ^ {2}} = 1\frac{5}{9} = 1.5555555555555556
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)70}\\\end{array}
Use the 1^{st} digit 7 from dividend 70
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)70}\\\end{array}
Since 7 is less than 45, use the next digit 0 from dividend 70 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)70}\\\end{array}
Use the 2^{nd} digit 0 from dividend 70
\begin{array}{l}\phantom{45)}01\phantom{4}\\45\overline{)70}\\\phantom{45)}\underline{\phantom{}45\phantom{}}\\\phantom{45)}25\\\end{array}
Find closest multiple of 45 to 70. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 70 to get reminder 25. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }25
Since 25 is less than 45, stop the division. The reminder is 25. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}