Solve for x
x=\frac{5\sqrt{79}}{2}+25\approx 47.220486043
x=-\frac{5\sqrt{79}}{2}+25\approx 2.779513957
Graph
Share
Copied to clipboard
7.5=\frac{-100}{4}\left(\frac{\left(1-0.04x\right)^{2}}{0.7}-\frac{1}{0.7}\right)
Expand \frac{-1}{0.04} by multiplying both numerator and the denominator by 100.
7.5=-25\left(\frac{\left(1-0.04x\right)^{2}}{0.7}-\frac{1}{0.7}\right)
Divide -100 by 4 to get -25.
7.5=-25\left(\frac{1-0.08x+0.0016x^{2}}{0.7}-\frac{1}{0.7}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-0.04x\right)^{2}.
7.5=-25\left(\frac{1-0.08x+0.0016x^{2}}{0.7}-\frac{10}{7}\right)
Expand \frac{1}{0.7} by multiplying both numerator and the denominator by 10.
7.5=-25\times \frac{1-0.08x+0.0016x^{2}}{0.7}+\frac{250}{7}
Use the distributive property to multiply -25 by \frac{1-0.08x+0.0016x^{2}}{0.7}-\frac{10}{7}.
7.5=-25\left(\frac{1}{0.7}+\frac{-0.08x}{0.7}+\frac{0.0016x^{2}}{0.7}\right)+\frac{250}{7}
Divide each term of 1-0.08x+0.0016x^{2} by 0.7 to get \frac{1}{0.7}+\frac{-0.08x}{0.7}+\frac{0.0016x^{2}}{0.7}.
7.5=-25\left(\frac{10}{7}+\frac{-0.08x}{0.7}+\frac{0.0016x^{2}}{0.7}\right)+\frac{250}{7}
Expand \frac{1}{0.7} by multiplying both numerator and the denominator by 10.
7.5=-25\left(\frac{10}{7}-\frac{4}{35}x+\frac{0.0016x^{2}}{0.7}\right)+\frac{250}{7}
Divide -0.08x by 0.7 to get -\frac{4}{35}x.
7.5=-25\left(\frac{10}{7}-\frac{4}{35}x+\frac{2}{875}x^{2}\right)+\frac{250}{7}
Divide 0.0016x^{2} by 0.7 to get \frac{2}{875}x^{2}.
7.5=-\frac{250}{7}+\frac{20}{7}x-\frac{2}{35}x^{2}+\frac{250}{7}
Use the distributive property to multiply -25 by \frac{10}{7}-\frac{4}{35}x+\frac{2}{875}x^{2}.
7.5=\frac{20}{7}x-\frac{2}{35}x^{2}
Add -\frac{250}{7} and \frac{250}{7} to get 0.
\frac{20}{7}x-\frac{2}{35}x^{2}=7.5
Swap sides so that all variable terms are on the left hand side.
\frac{20}{7}x-\frac{2}{35}x^{2}-7.5=0
Subtract 7.5 from both sides.
-\frac{2}{35}x^{2}+\frac{20}{7}x-7.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{20}{7}±\sqrt{\frac{20}{7}^{2}-4\left(-\frac{2}{35}\right)\left(-7.5\right)}}{2\left(-\frac{2}{35}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{2}{35} for a, \frac{20}{7} for b, and -7.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{20}{7}±\sqrt{\frac{400}{49}-4\left(-\frac{2}{35}\right)\left(-7.5\right)}}{2\left(-\frac{2}{35}\right)}
Square \frac{20}{7} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{20}{7}±\sqrt{\frac{400}{49}+\frac{8}{35}\left(-7.5\right)}}{2\left(-\frac{2}{35}\right)}
Multiply -4 times -\frac{2}{35}.
x=\frac{-\frac{20}{7}±\sqrt{\frac{400}{49}-\frac{12}{7}}}{2\left(-\frac{2}{35}\right)}
Multiply \frac{8}{35} times -7.5 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{20}{7}±\sqrt{\frac{316}{49}}}{2\left(-\frac{2}{35}\right)}
Add \frac{400}{49} to -\frac{12}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{20}{7}±\frac{2\sqrt{79}}{7}}{2\left(-\frac{2}{35}\right)}
Take the square root of \frac{316}{49}.
x=\frac{-\frac{20}{7}±\frac{2\sqrt{79}}{7}}{-\frac{4}{35}}
Multiply 2 times -\frac{2}{35}.
x=\frac{2\sqrt{79}-20}{-\frac{4}{35}\times 7}
Now solve the equation x=\frac{-\frac{20}{7}±\frac{2\sqrt{79}}{7}}{-\frac{4}{35}} when ± is plus. Add -\frac{20}{7} to \frac{2\sqrt{79}}{7}.
x=-\frac{5\sqrt{79}}{2}+25
Divide \frac{-20+2\sqrt{79}}{7} by -\frac{4}{35} by multiplying \frac{-20+2\sqrt{79}}{7} by the reciprocal of -\frac{4}{35}.
x=\frac{-2\sqrt{79}-20}{-\frac{4}{35}\times 7}
Now solve the equation x=\frac{-\frac{20}{7}±\frac{2\sqrt{79}}{7}}{-\frac{4}{35}} when ± is minus. Subtract \frac{2\sqrt{79}}{7} from -\frac{20}{7}.
x=\frac{5\sqrt{79}}{2}+25
Divide \frac{-20-2\sqrt{79}}{7} by -\frac{4}{35} by multiplying \frac{-20-2\sqrt{79}}{7} by the reciprocal of -\frac{4}{35}.
x=-\frac{5\sqrt{79}}{2}+25 x=\frac{5\sqrt{79}}{2}+25
The equation is now solved.
7.5=\frac{-100}{4}\left(\frac{\left(1-0.04x\right)^{2}}{0.7}-\frac{1}{0.7}\right)
Expand \frac{-1}{0.04} by multiplying both numerator and the denominator by 100.
7.5=-25\left(\frac{\left(1-0.04x\right)^{2}}{0.7}-\frac{1}{0.7}\right)
Divide -100 by 4 to get -25.
7.5=-25\left(\frac{1-0.08x+0.0016x^{2}}{0.7}-\frac{1}{0.7}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-0.04x\right)^{2}.
7.5=-25\left(\frac{1-0.08x+0.0016x^{2}}{0.7}-\frac{10}{7}\right)
Expand \frac{1}{0.7} by multiplying both numerator and the denominator by 10.
7.5=-25\times \frac{1-0.08x+0.0016x^{2}}{0.7}+\frac{250}{7}
Use the distributive property to multiply -25 by \frac{1-0.08x+0.0016x^{2}}{0.7}-\frac{10}{7}.
7.5=-25\left(\frac{1}{0.7}+\frac{-0.08x}{0.7}+\frac{0.0016x^{2}}{0.7}\right)+\frac{250}{7}
Divide each term of 1-0.08x+0.0016x^{2} by 0.7 to get \frac{1}{0.7}+\frac{-0.08x}{0.7}+\frac{0.0016x^{2}}{0.7}.
7.5=-25\left(\frac{10}{7}+\frac{-0.08x}{0.7}+\frac{0.0016x^{2}}{0.7}\right)+\frac{250}{7}
Expand \frac{1}{0.7} by multiplying both numerator and the denominator by 10.
7.5=-25\left(\frac{10}{7}-\frac{4}{35}x+\frac{0.0016x^{2}}{0.7}\right)+\frac{250}{7}
Divide -0.08x by 0.7 to get -\frac{4}{35}x.
7.5=-25\left(\frac{10}{7}-\frac{4}{35}x+\frac{2}{875}x^{2}\right)+\frac{250}{7}
Divide 0.0016x^{2} by 0.7 to get \frac{2}{875}x^{2}.
7.5=-\frac{250}{7}+\frac{20}{7}x-\frac{2}{35}x^{2}+\frac{250}{7}
Use the distributive property to multiply -25 by \frac{10}{7}-\frac{4}{35}x+\frac{2}{875}x^{2}.
7.5=\frac{20}{7}x-\frac{2}{35}x^{2}
Add -\frac{250}{7} and \frac{250}{7} to get 0.
\frac{20}{7}x-\frac{2}{35}x^{2}=7.5
Swap sides so that all variable terms are on the left hand side.
-\frac{2}{35}x^{2}+\frac{20}{7}x=7.5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{2}{35}x^{2}+\frac{20}{7}x}{-\frac{2}{35}}=\frac{7.5}{-\frac{2}{35}}
Divide both sides of the equation by -\frac{2}{35}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{20}{7}}{-\frac{2}{35}}x=\frac{7.5}{-\frac{2}{35}}
Dividing by -\frac{2}{35} undoes the multiplication by -\frac{2}{35}.
x^{2}-50x=\frac{7.5}{-\frac{2}{35}}
Divide \frac{20}{7} by -\frac{2}{35} by multiplying \frac{20}{7} by the reciprocal of -\frac{2}{35}.
x^{2}-50x=-131.25
Divide 7.5 by -\frac{2}{35} by multiplying 7.5 by the reciprocal of -\frac{2}{35}.
x^{2}-50x+\left(-25\right)^{2}=-131.25+\left(-25\right)^{2}
Divide -50, the coefficient of the x term, by 2 to get -25. Then add the square of -25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-50x+625=-131.25+625
Square -25.
x^{2}-50x+625=493.75
Add -131.25 to 625.
\left(x-25\right)^{2}=493.75
Factor x^{2}-50x+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{493.75}
Take the square root of both sides of the equation.
x-25=\frac{5\sqrt{79}}{2} x-25=-\frac{5\sqrt{79}}{2}
Simplify.
x=\frac{5\sqrt{79}}{2}+25 x=-\frac{5\sqrt{79}}{2}+25
Add 25 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}