Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7.3x^{2}-5x=-4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
7.3x^{2}-5x-\left(-4\right)=-4-\left(-4\right)
Add 4 to both sides of the equation.
7.3x^{2}-5x-\left(-4\right)=0
Subtracting -4 from itself leaves 0.
7.3x^{2}-5x+4=0
Subtract -4 from 0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 7.3\times 4}}{2\times 7.3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7.3 for a, -5 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 7.3\times 4}}{2\times 7.3}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-29.2\times 4}}{2\times 7.3}
Multiply -4 times 7.3.
x=\frac{-\left(-5\right)±\sqrt{25-116.8}}{2\times 7.3}
Multiply -29.2 times 4.
x=\frac{-\left(-5\right)±\sqrt{-91.8}}{2\times 7.3}
Add 25 to -116.8.
x=\frac{-\left(-5\right)±\frac{3\sqrt{255}i}{5}}{2\times 7.3}
Take the square root of -91.8.
x=\frac{5±\frac{3\sqrt{255}i}{5}}{2\times 7.3}
The opposite of -5 is 5.
x=\frac{5±\frac{3\sqrt{255}i}{5}}{14.6}
Multiply 2 times 7.3.
x=\frac{\frac{3\sqrt{255}i}{5}+5}{14.6}
Now solve the equation x=\frac{5±\frac{3\sqrt{255}i}{5}}{14.6} when ± is plus. Add 5 to \frac{3i\sqrt{255}}{5}.
x=\frac{25+3\sqrt{255}i}{73}
Divide 5+\frac{3i\sqrt{255}}{5} by 14.6 by multiplying 5+\frac{3i\sqrt{255}}{5} by the reciprocal of 14.6.
x=\frac{-\frac{3\sqrt{255}i}{5}+5}{14.6}
Now solve the equation x=\frac{5±\frac{3\sqrt{255}i}{5}}{14.6} when ± is minus. Subtract \frac{3i\sqrt{255}}{5} from 5.
x=\frac{-3\sqrt{255}i+25}{73}
Divide 5-\frac{3i\sqrt{255}}{5} by 14.6 by multiplying 5-\frac{3i\sqrt{255}}{5} by the reciprocal of 14.6.
x=\frac{25+3\sqrt{255}i}{73} x=\frac{-3\sqrt{255}i+25}{73}
The equation is now solved.
7.3x^{2}-5x=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{7.3x^{2}-5x}{7.3}=-\frac{4}{7.3}
Divide both sides of the equation by 7.3, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{5}{7.3}\right)x=-\frac{4}{7.3}
Dividing by 7.3 undoes the multiplication by 7.3.
x^{2}-\frac{50}{73}x=-\frac{4}{7.3}
Divide -5 by 7.3 by multiplying -5 by the reciprocal of 7.3.
x^{2}-\frac{50}{73}x=-\frac{40}{73}
Divide -4 by 7.3 by multiplying -4 by the reciprocal of 7.3.
x^{2}-\frac{50}{73}x+\left(-\frac{25}{73}\right)^{2}=-\frac{40}{73}+\left(-\frac{25}{73}\right)^{2}
Divide -\frac{50}{73}, the coefficient of the x term, by 2 to get -\frac{25}{73}. Then add the square of -\frac{25}{73} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{50}{73}x+\frac{625}{5329}=-\frac{40}{73}+\frac{625}{5329}
Square -\frac{25}{73} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{50}{73}x+\frac{625}{5329}=-\frac{2295}{5329}
Add -\frac{40}{73} to \frac{625}{5329} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{73}\right)^{2}=-\frac{2295}{5329}
Factor x^{2}-\frac{50}{73}x+\frac{625}{5329}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{73}\right)^{2}}=\sqrt{-\frac{2295}{5329}}
Take the square root of both sides of the equation.
x-\frac{25}{73}=\frac{3\sqrt{255}i}{73} x-\frac{25}{73}=-\frac{3\sqrt{255}i}{73}
Simplify.
x=\frac{25+3\sqrt{255}i}{73} x=\frac{-3\sqrt{255}i+25}{73}
Add \frac{25}{73} to both sides of the equation.