Solve for t
t = \frac{50 \sqrt{287} - 600}{143} \approx 1.727648373
t=\frac{-50\sqrt{287}-600}{143}\approx -10.119256764
Share
Copied to clipboard
7.15t^{2}+60t-125=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-60±\sqrt{60^{2}-4\times 7.15\left(-125\right)}}{2\times 7.15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7.15 for a, 60 for b, and -125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-60±\sqrt{3600-4\times 7.15\left(-125\right)}}{2\times 7.15}
Square 60.
t=\frac{-60±\sqrt{3600-28.6\left(-125\right)}}{2\times 7.15}
Multiply -4 times 7.15.
t=\frac{-60±\sqrt{3600+3575}}{2\times 7.15}
Multiply -28.6 times -125.
t=\frac{-60±\sqrt{7175}}{2\times 7.15}
Add 3600 to 3575.
t=\frac{-60±5\sqrt{287}}{2\times 7.15}
Take the square root of 7175.
t=\frac{-60±5\sqrt{287}}{14.3}
Multiply 2 times 7.15.
t=\frac{5\sqrt{287}-60}{14.3}
Now solve the equation t=\frac{-60±5\sqrt{287}}{14.3} when ± is plus. Add -60 to 5\sqrt{287}.
t=\frac{50\sqrt{287}-600}{143}
Divide -60+5\sqrt{287} by 14.3 by multiplying -60+5\sqrt{287} by the reciprocal of 14.3.
t=\frac{-5\sqrt{287}-60}{14.3}
Now solve the equation t=\frac{-60±5\sqrt{287}}{14.3} when ± is minus. Subtract 5\sqrt{287} from -60.
t=\frac{-50\sqrt{287}-600}{143}
Divide -60-5\sqrt{287} by 14.3 by multiplying -60-5\sqrt{287} by the reciprocal of 14.3.
t=\frac{50\sqrt{287}-600}{143} t=\frac{-50\sqrt{287}-600}{143}
The equation is now solved.
7.15t^{2}+60t-125=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7.15t^{2}+60t-125-\left(-125\right)=-\left(-125\right)
Add 125 to both sides of the equation.
7.15t^{2}+60t=-\left(-125\right)
Subtracting -125 from itself leaves 0.
7.15t^{2}+60t=125
Subtract -125 from 0.
\frac{7.15t^{2}+60t}{7.15}=\frac{125}{7.15}
Divide both sides of the equation by 7.15, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{60}{7.15}t=\frac{125}{7.15}
Dividing by 7.15 undoes the multiplication by 7.15.
t^{2}+\frac{1200}{143}t=\frac{125}{7.15}
Divide 60 by 7.15 by multiplying 60 by the reciprocal of 7.15.
t^{2}+\frac{1200}{143}t=\frac{2500}{143}
Divide 125 by 7.15 by multiplying 125 by the reciprocal of 7.15.
t^{2}+\frac{1200}{143}t+\frac{600}{143}^{2}=\frac{2500}{143}+\frac{600}{143}^{2}
Divide \frac{1200}{143}, the coefficient of the x term, by 2 to get \frac{600}{143}. Then add the square of \frac{600}{143} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{1200}{143}t+\frac{360000}{20449}=\frac{2500}{143}+\frac{360000}{20449}
Square \frac{600}{143} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{1200}{143}t+\frac{360000}{20449}=\frac{717500}{20449}
Add \frac{2500}{143} to \frac{360000}{20449} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{600}{143}\right)^{2}=\frac{717500}{20449}
Factor t^{2}+\frac{1200}{143}t+\frac{360000}{20449}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{600}{143}\right)^{2}}=\sqrt{\frac{717500}{20449}}
Take the square root of both sides of the equation.
t+\frac{600}{143}=\frac{50\sqrt{287}}{143} t+\frac{600}{143}=-\frac{50\sqrt{287}}{143}
Simplify.
t=\frac{50\sqrt{287}-600}{143} t=\frac{-50\sqrt{287}-600}{143}
Subtract \frac{600}{143} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}