Solve for b
b\in \left(0,\frac{12}{37}\right)
Share
Copied to clipboard
\frac{7b}{b}-\frac{2}{b}<\frac{5}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{b}{b}.
\frac{7b-2}{b}<\frac{5}{6}
Since \frac{7b}{b} and \frac{2}{b} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}\times \frac{1}{b}\left(37b-12\right)<0
Factor out b.
b>0 b-\frac{12}{37}<0
For the product to be negative, b and b-\frac{12}{37} have to be of the opposite signs. Consider the case when b is positive and b-\frac{12}{37} is negative.
b\in \left(0,\frac{12}{37}\right)
The solution satisfying both inequalities is b\in \left(0,\frac{12}{37}\right).
b-\frac{12}{37}>0 b<0
Consider the case when b-\frac{12}{37} is positive and b is negative.
b\in \emptyset
This is false for any b.
b\in \left(0,\frac{12}{37}\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}