7,5 + 2 \frac { 1 } { 2 } \cdot ( 1 \frac { 2 } { 3 } : 2,5 - 3
Evaluate
\frac{5}{3}\approx 1,666666667
Factor
\frac{5}{3} = 1\frac{2}{3} = 1.6666666666666667
Share
Copied to clipboard
7,5+\frac{4+1}{2}\left(\frac{\frac{1\times 3+2}{3}}{2,5}-3\right)
Multiply 2 and 2 to get 4.
7,5+\frac{5}{2}\left(\frac{\frac{1\times 3+2}{3}}{2,5}-3\right)
Add 4 and 1 to get 5.
7,5+\frac{5}{2}\left(\frac{1\times 3+2}{3\times 2,5}-3\right)
Express \frac{\frac{1\times 3+2}{3}}{2,5} as a single fraction.
7,5+\frac{5}{2}\left(\frac{3+2}{3\times 2,5}-3\right)
Multiply 1 and 3 to get 3.
7,5+\frac{5}{2}\left(\frac{5}{3\times 2,5}-3\right)
Add 3 and 2 to get 5.
7,5+\frac{5}{2}\left(\frac{5}{7,5}-3\right)
Multiply 3 and 2,5 to get 7,5.
7,5+\frac{5}{2}\left(\frac{50}{75}-3\right)
Expand \frac{5}{7,5} by multiplying both numerator and the denominator by 10.
7,5+\frac{5}{2}\left(\frac{2}{3}-3\right)
Reduce the fraction \frac{50}{75} to lowest terms by extracting and canceling out 25.
7,5+\frac{5}{2}\left(\frac{2}{3}-\frac{9}{3}\right)
Convert 3 to fraction \frac{9}{3}.
7,5+\frac{5}{2}\times \frac{2-9}{3}
Since \frac{2}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
7,5+\frac{5}{2}\left(-\frac{7}{3}\right)
Subtract 9 from 2 to get -7.
7,5+\frac{5\left(-7\right)}{2\times 3}
Multiply \frac{5}{2} times -\frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
7,5+\frac{-35}{6}
Do the multiplications in the fraction \frac{5\left(-7\right)}{2\times 3}.
7,5-\frac{35}{6}
Fraction \frac{-35}{6} can be rewritten as -\frac{35}{6} by extracting the negative sign.
\frac{15}{2}-\frac{35}{6}
Convert decimal number 7,5 to fraction \frac{75}{10}. Reduce the fraction \frac{75}{10} to lowest terms by extracting and canceling out 5.
\frac{45}{6}-\frac{35}{6}
Least common multiple of 2 and 6 is 6. Convert \frac{15}{2} and \frac{35}{6} to fractions with denominator 6.
\frac{45-35}{6}
Since \frac{45}{6} and \frac{35}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{6}
Subtract 35 from 45 to get 10.
\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}