Solve for y
y=-\frac{3}{5}=-0.6
y=2
Graph
Share
Copied to clipboard
7y-5y^{2}=-6
Subtract 5y^{2} from both sides.
7y-5y^{2}+6=0
Add 6 to both sides.
-5y^{2}+7y+6=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=7 ab=-5\times 6=-30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -5y^{2}+ay+by+6. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=10 b=-3
The solution is the pair that gives sum 7.
\left(-5y^{2}+10y\right)+\left(-3y+6\right)
Rewrite -5y^{2}+7y+6 as \left(-5y^{2}+10y\right)+\left(-3y+6\right).
5y\left(-y+2\right)+3\left(-y+2\right)
Factor out 5y in the first and 3 in the second group.
\left(-y+2\right)\left(5y+3\right)
Factor out common term -y+2 by using distributive property.
y=2 y=-\frac{3}{5}
To find equation solutions, solve -y+2=0 and 5y+3=0.
7y-5y^{2}=-6
Subtract 5y^{2} from both sides.
7y-5y^{2}+6=0
Add 6 to both sides.
-5y^{2}+7y+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-7±\sqrt{7^{2}-4\left(-5\right)\times 6}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 7 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-7±\sqrt{49-4\left(-5\right)\times 6}}{2\left(-5\right)}
Square 7.
y=\frac{-7±\sqrt{49+20\times 6}}{2\left(-5\right)}
Multiply -4 times -5.
y=\frac{-7±\sqrt{49+120}}{2\left(-5\right)}
Multiply 20 times 6.
y=\frac{-7±\sqrt{169}}{2\left(-5\right)}
Add 49 to 120.
y=\frac{-7±13}{2\left(-5\right)}
Take the square root of 169.
y=\frac{-7±13}{-10}
Multiply 2 times -5.
y=\frac{6}{-10}
Now solve the equation y=\frac{-7±13}{-10} when ± is plus. Add -7 to 13.
y=-\frac{3}{5}
Reduce the fraction \frac{6}{-10} to lowest terms by extracting and canceling out 2.
y=-\frac{20}{-10}
Now solve the equation y=\frac{-7±13}{-10} when ± is minus. Subtract 13 from -7.
y=2
Divide -20 by -10.
y=-\frac{3}{5} y=2
The equation is now solved.
7y-5y^{2}=-6
Subtract 5y^{2} from both sides.
-5y^{2}+7y=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5y^{2}+7y}{-5}=-\frac{6}{-5}
Divide both sides by -5.
y^{2}+\frac{7}{-5}y=-\frac{6}{-5}
Dividing by -5 undoes the multiplication by -5.
y^{2}-\frac{7}{5}y=-\frac{6}{-5}
Divide 7 by -5.
y^{2}-\frac{7}{5}y=\frac{6}{5}
Divide -6 by -5.
y^{2}-\frac{7}{5}y+\left(-\frac{7}{10}\right)^{2}=\frac{6}{5}+\left(-\frac{7}{10}\right)^{2}
Divide -\frac{7}{5}, the coefficient of the x term, by 2 to get -\frac{7}{10}. Then add the square of -\frac{7}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{7}{5}y+\frac{49}{100}=\frac{6}{5}+\frac{49}{100}
Square -\frac{7}{10} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{7}{5}y+\frac{49}{100}=\frac{169}{100}
Add \frac{6}{5} to \frac{49}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{7}{10}\right)^{2}=\frac{169}{100}
Factor y^{2}-\frac{7}{5}y+\frac{49}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{7}{10}\right)^{2}}=\sqrt{\frac{169}{100}}
Take the square root of both sides of the equation.
y-\frac{7}{10}=\frac{13}{10} y-\frac{7}{10}=-\frac{13}{10}
Simplify.
y=2 y=-\frac{3}{5}
Add \frac{7}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}