Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
7x-\left(14-2x-5\right)=18-\left(3x+15-4x\right)
To find the opposite of 2x+5, find the opposite of each term.
7x-\left(9-2x\right)=18-\left(3x+15-4x\right)
Subtract 5 from 14 to get 9.
7x-9-\left(-2x\right)=18-\left(3x+15-4x\right)
To find the opposite of 9-2x, find the opposite of each term.
7x-9+2x=18-\left(3x+15-4x\right)
The opposite of -2x is 2x.
9x-9=18-\left(3x+15-4x\right)
Combine 7x and 2x to get 9x.
9x-9=18-\left(-x+15\right)
Combine 3x and -4x to get -x.
9x-9=18-\left(-x\right)-15
To find the opposite of -x+15, find the opposite of each term.
9x-9=18+x-15
The opposite of -x is x.
9x-9=3+x
Subtract 15 from 18 to get 3.
9x-9-x=3
Subtract x from both sides.
8x-9=3
Combine 9x and -x to get 8x.
8x=3+9
Add 9 to both sides.
8x=12
Add 3 and 9 to get 12.
x=\frac{12}{8}
Divide both sides by 8.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}