Solve for x
x=-\frac{2}{7}\approx -0.285714286
x=5
Graph
Share
Copied to clipboard
7x^{2}-35x=10-2x
Use the distributive property to multiply 7x by x-5.
7x^{2}-35x-10=-2x
Subtract 10 from both sides.
7x^{2}-35x-10+2x=0
Add 2x to both sides.
7x^{2}-33x-10=0
Combine -35x and 2x to get -33x.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 7\left(-10\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -33 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-33\right)±\sqrt{1089-4\times 7\left(-10\right)}}{2\times 7}
Square -33.
x=\frac{-\left(-33\right)±\sqrt{1089-28\left(-10\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-33\right)±\sqrt{1089+280}}{2\times 7}
Multiply -28 times -10.
x=\frac{-\left(-33\right)±\sqrt{1369}}{2\times 7}
Add 1089 to 280.
x=\frac{-\left(-33\right)±37}{2\times 7}
Take the square root of 1369.
x=\frac{33±37}{2\times 7}
The opposite of -33 is 33.
x=\frac{33±37}{14}
Multiply 2 times 7.
x=\frac{70}{14}
Now solve the equation x=\frac{33±37}{14} when ± is plus. Add 33 to 37.
x=5
Divide 70 by 14.
x=-\frac{4}{14}
Now solve the equation x=\frac{33±37}{14} when ± is minus. Subtract 37 from 33.
x=-\frac{2}{7}
Reduce the fraction \frac{-4}{14} to lowest terms by extracting and canceling out 2.
x=5 x=-\frac{2}{7}
The equation is now solved.
7x^{2}-35x=10-2x
Use the distributive property to multiply 7x by x-5.
7x^{2}-35x+2x=10
Add 2x to both sides.
7x^{2}-33x=10
Combine -35x and 2x to get -33x.
\frac{7x^{2}-33x}{7}=\frac{10}{7}
Divide both sides by 7.
x^{2}-\frac{33}{7}x=\frac{10}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{33}{7}x+\left(-\frac{33}{14}\right)^{2}=\frac{10}{7}+\left(-\frac{33}{14}\right)^{2}
Divide -\frac{33}{7}, the coefficient of the x term, by 2 to get -\frac{33}{14}. Then add the square of -\frac{33}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{33}{7}x+\frac{1089}{196}=\frac{10}{7}+\frac{1089}{196}
Square -\frac{33}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{33}{7}x+\frac{1089}{196}=\frac{1369}{196}
Add \frac{10}{7} to \frac{1089}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{33}{14}\right)^{2}=\frac{1369}{196}
Factor x^{2}-\frac{33}{7}x+\frac{1089}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{33}{14}\right)^{2}}=\sqrt{\frac{1369}{196}}
Take the square root of both sides of the equation.
x-\frac{33}{14}=\frac{37}{14} x-\frac{33}{14}=-\frac{37}{14}
Simplify.
x=5 x=-\frac{2}{7}
Add \frac{33}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}