Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-4x=49
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
7x^{2}-4x-49=49-49
Subtract 49 from both sides of the equation.
7x^{2}-4x-49=0
Subtracting 49 from itself leaves 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 7\left(-49\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -4 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 7\left(-49\right)}}{2\times 7}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-28\left(-49\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-4\right)±\sqrt{16+1372}}{2\times 7}
Multiply -28 times -49.
x=\frac{-\left(-4\right)±\sqrt{1388}}{2\times 7}
Add 16 to 1372.
x=\frac{-\left(-4\right)±2\sqrt{347}}{2\times 7}
Take the square root of 1388.
x=\frac{4±2\sqrt{347}}{2\times 7}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{347}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{347}+4}{14}
Now solve the equation x=\frac{4±2\sqrt{347}}{14} when ± is plus. Add 4 to 2\sqrt{347}.
x=\frac{\sqrt{347}+2}{7}
Divide 4+2\sqrt{347} by 14.
x=\frac{4-2\sqrt{347}}{14}
Now solve the equation x=\frac{4±2\sqrt{347}}{14} when ± is minus. Subtract 2\sqrt{347} from 4.
x=\frac{2-\sqrt{347}}{7}
Divide 4-2\sqrt{347} by 14.
x=\frac{\sqrt{347}+2}{7} x=\frac{2-\sqrt{347}}{7}
The equation is now solved.
7x^{2}-4x=49
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{7x^{2}-4x}{7}=\frac{49}{7}
Divide both sides by 7.
x^{2}-\frac{4}{7}x=\frac{49}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{4}{7}x=7
Divide 49 by 7.
x^{2}-\frac{4}{7}x+\left(-\frac{2}{7}\right)^{2}=7+\left(-\frac{2}{7}\right)^{2}
Divide -\frac{4}{7}, the coefficient of the x term, by 2 to get -\frac{2}{7}. Then add the square of -\frac{2}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{7}x+\frac{4}{49}=7+\frac{4}{49}
Square -\frac{2}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{7}x+\frac{4}{49}=\frac{347}{49}
Add 7 to \frac{4}{49}.
\left(x-\frac{2}{7}\right)^{2}=\frac{347}{49}
Factor x^{2}-\frac{4}{7}x+\frac{4}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{7}\right)^{2}}=\sqrt{\frac{347}{49}}
Take the square root of both sides of the equation.
x-\frac{2}{7}=\frac{\sqrt{347}}{7} x-\frac{2}{7}=-\frac{\sqrt{347}}{7}
Simplify.
x=\frac{\sqrt{347}+2}{7} x=\frac{2-\sqrt{347}}{7}
Add \frac{2}{7} to both sides of the equation.