Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+4x+5=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
7x^{2}+4x+5-3=3-3
Subtract 3 from both sides of the equation.
7x^{2}+4x+5-3=0
Subtracting 3 from itself leaves 0.
7x^{2}+4x+2=0
Subtract 3 from 5.
x=\frac{-4±\sqrt{4^{2}-4\times 7\times 2}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 4 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 7\times 2}}{2\times 7}
Square 4.
x=\frac{-4±\sqrt{16-28\times 2}}{2\times 7}
Multiply -4 times 7.
x=\frac{-4±\sqrt{16-56}}{2\times 7}
Multiply -28 times 2.
x=\frac{-4±\sqrt{-40}}{2\times 7}
Add 16 to -56.
x=\frac{-4±2\sqrt{10}i}{2\times 7}
Take the square root of -40.
x=\frac{-4±2\sqrt{10}i}{14}
Multiply 2 times 7.
x=\frac{-4+2\sqrt{10}i}{14}
Now solve the equation x=\frac{-4±2\sqrt{10}i}{14} when ± is plus. Add -4 to 2i\sqrt{10}.
x=\frac{-2+\sqrt{10}i}{7}
Divide -4+2i\sqrt{10} by 14.
x=\frac{-2\sqrt{10}i-4}{14}
Now solve the equation x=\frac{-4±2\sqrt{10}i}{14} when ± is minus. Subtract 2i\sqrt{10} from -4.
x=\frac{-\sqrt{10}i-2}{7}
Divide -4-2i\sqrt{10} by 14.
x=\frac{-2+\sqrt{10}i}{7} x=\frac{-\sqrt{10}i-2}{7}
The equation is now solved.
7x^{2}+4x+5=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}+4x+5-5=3-5
Subtract 5 from both sides of the equation.
7x^{2}+4x=3-5
Subtracting 5 from itself leaves 0.
7x^{2}+4x=-2
Subtract 5 from 3.
\frac{7x^{2}+4x}{7}=-\frac{2}{7}
Divide both sides by 7.
x^{2}+\frac{4}{7}x=-\frac{2}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{4}{7}x+\left(\frac{2}{7}\right)^{2}=-\frac{2}{7}+\left(\frac{2}{7}\right)^{2}
Divide \frac{4}{7}, the coefficient of the x term, by 2 to get \frac{2}{7}. Then add the square of \frac{2}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{7}x+\frac{4}{49}=-\frac{2}{7}+\frac{4}{49}
Square \frac{2}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{7}x+\frac{4}{49}=-\frac{10}{49}
Add -\frac{2}{7} to \frac{4}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{7}\right)^{2}=-\frac{10}{49}
Factor x^{2}+\frac{4}{7}x+\frac{4}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{7}\right)^{2}}=\sqrt{-\frac{10}{49}}
Take the square root of both sides of the equation.
x+\frac{2}{7}=\frac{\sqrt{10}i}{7} x+\frac{2}{7}=-\frac{\sqrt{10}i}{7}
Simplify.
x=\frac{-2+\sqrt{10}i}{7} x=\frac{-\sqrt{10}i-2}{7}
Subtract \frac{2}{7} from both sides of the equation.