Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x-x^{2}=-1
Subtract x^{2} from both sides.
7x-x^{2}+1=0
Add 1 to both sides.
-x^{2}+7x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 7 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-1\right)}}{2\left(-1\right)}
Square 7.
x=\frac{-7±\sqrt{49+4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-7±\sqrt{53}}{2\left(-1\right)}
Add 49 to 4.
x=\frac{-7±\sqrt{53}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{53}-7}{-2}
Now solve the equation x=\frac{-7±\sqrt{53}}{-2} when ± is plus. Add -7 to \sqrt{53}.
x=\frac{7-\sqrt{53}}{2}
Divide -7+\sqrt{53} by -2.
x=\frac{-\sqrt{53}-7}{-2}
Now solve the equation x=\frac{-7±\sqrt{53}}{-2} when ± is minus. Subtract \sqrt{53} from -7.
x=\frac{\sqrt{53}+7}{2}
Divide -7-\sqrt{53} by -2.
x=\frac{7-\sqrt{53}}{2} x=\frac{\sqrt{53}+7}{2}
The equation is now solved.
7x-x^{2}=-1
Subtract x^{2} from both sides.
-x^{2}+7x=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+7x}{-1}=-\frac{1}{-1}
Divide both sides by -1.
x^{2}+\frac{7}{-1}x=-\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-7x=-\frac{1}{-1}
Divide 7 by -1.
x^{2}-7x=1
Divide -1 by -1.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=1+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=1+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{53}{4}
Add 1 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{53}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{53}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{53}}{2} x-\frac{7}{2}=-\frac{\sqrt{53}}{2}
Simplify.
x=\frac{\sqrt{53}+7}{2} x=\frac{7-\sqrt{53}}{2}
Add \frac{7}{2} to both sides of the equation.