Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x=4x^{2}+120x+30
Use the distributive property to multiply 4x by x+30.
7x-4x^{2}=120x+30
Subtract 4x^{2} from both sides.
7x-4x^{2}-120x=30
Subtract 120x from both sides.
-113x-4x^{2}=30
Combine 7x and -120x to get -113x.
-113x-4x^{2}-30=0
Subtract 30 from both sides.
-4x^{2}-113x-30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-113\right)±\sqrt{\left(-113\right)^{2}-4\left(-4\right)\left(-30\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -113 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-113\right)±\sqrt{12769-4\left(-4\right)\left(-30\right)}}{2\left(-4\right)}
Square -113.
x=\frac{-\left(-113\right)±\sqrt{12769+16\left(-30\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-113\right)±\sqrt{12769-480}}{2\left(-4\right)}
Multiply 16 times -30.
x=\frac{-\left(-113\right)±\sqrt{12289}}{2\left(-4\right)}
Add 12769 to -480.
x=\frac{113±\sqrt{12289}}{2\left(-4\right)}
The opposite of -113 is 113.
x=\frac{113±\sqrt{12289}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{12289}+113}{-8}
Now solve the equation x=\frac{113±\sqrt{12289}}{-8} when ± is plus. Add 113 to \sqrt{12289}.
x=\frac{-\sqrt{12289}-113}{8}
Divide 113+\sqrt{12289} by -8.
x=\frac{113-\sqrt{12289}}{-8}
Now solve the equation x=\frac{113±\sqrt{12289}}{-8} when ± is minus. Subtract \sqrt{12289} from 113.
x=\frac{\sqrt{12289}-113}{8}
Divide 113-\sqrt{12289} by -8.
x=\frac{-\sqrt{12289}-113}{8} x=\frac{\sqrt{12289}-113}{8}
The equation is now solved.
7x=4x^{2}+120x+30
Use the distributive property to multiply 4x by x+30.
7x-4x^{2}=120x+30
Subtract 4x^{2} from both sides.
7x-4x^{2}-120x=30
Subtract 120x from both sides.
-113x-4x^{2}=30
Combine 7x and -120x to get -113x.
-4x^{2}-113x=30
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}-113x}{-4}=\frac{30}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{113}{-4}\right)x=\frac{30}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+\frac{113}{4}x=\frac{30}{-4}
Divide -113 by -4.
x^{2}+\frac{113}{4}x=-\frac{15}{2}
Reduce the fraction \frac{30}{-4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{113}{4}x+\left(\frac{113}{8}\right)^{2}=-\frac{15}{2}+\left(\frac{113}{8}\right)^{2}
Divide \frac{113}{4}, the coefficient of the x term, by 2 to get \frac{113}{8}. Then add the square of \frac{113}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{113}{4}x+\frac{12769}{64}=-\frac{15}{2}+\frac{12769}{64}
Square \frac{113}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{113}{4}x+\frac{12769}{64}=\frac{12289}{64}
Add -\frac{15}{2} to \frac{12769}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{113}{8}\right)^{2}=\frac{12289}{64}
Factor x^{2}+\frac{113}{4}x+\frac{12769}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{113}{8}\right)^{2}}=\sqrt{\frac{12289}{64}}
Take the square root of both sides of the equation.
x+\frac{113}{8}=\frac{\sqrt{12289}}{8} x+\frac{113}{8}=-\frac{\sqrt{12289}}{8}
Simplify.
x=\frac{\sqrt{12289}-113}{8} x=\frac{-\sqrt{12289}-113}{8}
Subtract \frac{113}{8} from both sides of the equation.