Solve for x (complex solution)
x=\frac{29+\sqrt{1959}i}{70}\approx 0.414285714+0.632294171i
x=\frac{-\sqrt{1959}i+29}{70}\approx 0.414285714-0.632294171i
Graph
Share
Copied to clipboard
7x\times 5x+5\times 4=5x\times 4+5x\times \frac{9}{5}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of x,5.
35xx+5\times 4=5x\times 4+5x\times \frac{9}{5}
Multiply 7 and 5 to get 35.
35x^{2}+5\times 4=5x\times 4+5x\times \frac{9}{5}
Multiply x and x to get x^{2}.
35x^{2}+20=5x\times 4+5x\times \frac{9}{5}
Multiply 5 and 4 to get 20.
35x^{2}+20=20x+5x\times \frac{9}{5}
Multiply 5 and 4 to get 20.
35x^{2}+20=20x+9x
Cancel out 5 and 5.
35x^{2}+20=29x
Combine 20x and 9x to get 29x.
35x^{2}+20-29x=0
Subtract 29x from both sides.
35x^{2}-29x+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 35\times 20}}{2\times 35}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 35 for a, -29 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\times 35\times 20}}{2\times 35}
Square -29.
x=\frac{-\left(-29\right)±\sqrt{841-140\times 20}}{2\times 35}
Multiply -4 times 35.
x=\frac{-\left(-29\right)±\sqrt{841-2800}}{2\times 35}
Multiply -140 times 20.
x=\frac{-\left(-29\right)±\sqrt{-1959}}{2\times 35}
Add 841 to -2800.
x=\frac{-\left(-29\right)±\sqrt{1959}i}{2\times 35}
Take the square root of -1959.
x=\frac{29±\sqrt{1959}i}{2\times 35}
The opposite of -29 is 29.
x=\frac{29±\sqrt{1959}i}{70}
Multiply 2 times 35.
x=\frac{29+\sqrt{1959}i}{70}
Now solve the equation x=\frac{29±\sqrt{1959}i}{70} when ± is plus. Add 29 to i\sqrt{1959}.
x=\frac{-\sqrt{1959}i+29}{70}
Now solve the equation x=\frac{29±\sqrt{1959}i}{70} when ± is minus. Subtract i\sqrt{1959} from 29.
x=\frac{29+\sqrt{1959}i}{70} x=\frac{-\sqrt{1959}i+29}{70}
The equation is now solved.
7x\times 5x+5\times 4=5x\times 4+5x\times \frac{9}{5}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of x,5.
35xx+5\times 4=5x\times 4+5x\times \frac{9}{5}
Multiply 7 and 5 to get 35.
35x^{2}+5\times 4=5x\times 4+5x\times \frac{9}{5}
Multiply x and x to get x^{2}.
35x^{2}+20=5x\times 4+5x\times \frac{9}{5}
Multiply 5 and 4 to get 20.
35x^{2}+20=20x+5x\times \frac{9}{5}
Multiply 5 and 4 to get 20.
35x^{2}+20=20x+9x
Cancel out 5 and 5.
35x^{2}+20=29x
Combine 20x and 9x to get 29x.
35x^{2}+20-29x=0
Subtract 29x from both sides.
35x^{2}-29x=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
\frac{35x^{2}-29x}{35}=-\frac{20}{35}
Divide both sides by 35.
x^{2}-\frac{29}{35}x=-\frac{20}{35}
Dividing by 35 undoes the multiplication by 35.
x^{2}-\frac{29}{35}x=-\frac{4}{7}
Reduce the fraction \frac{-20}{35} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{29}{35}x+\left(-\frac{29}{70}\right)^{2}=-\frac{4}{7}+\left(-\frac{29}{70}\right)^{2}
Divide -\frac{29}{35}, the coefficient of the x term, by 2 to get -\frac{29}{70}. Then add the square of -\frac{29}{70} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{29}{35}x+\frac{841}{4900}=-\frac{4}{7}+\frac{841}{4900}
Square -\frac{29}{70} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{29}{35}x+\frac{841}{4900}=-\frac{1959}{4900}
Add -\frac{4}{7} to \frac{841}{4900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{29}{70}\right)^{2}=-\frac{1959}{4900}
Factor x^{2}-\frac{29}{35}x+\frac{841}{4900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{70}\right)^{2}}=\sqrt{-\frac{1959}{4900}}
Take the square root of both sides of the equation.
x-\frac{29}{70}=\frac{\sqrt{1959}i}{70} x-\frac{29}{70}=-\frac{\sqrt{1959}i}{70}
Simplify.
x=\frac{29+\sqrt{1959}i}{70} x=\frac{-\sqrt{1959}i+29}{70}
Add \frac{29}{70} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}