Factor
w\left(7w-4\right)\left(w+2\right)
Evaluate
w\left(7w-4\right)\left(w+2\right)
Share
Copied to clipboard
w\left(7w^{2}+10w-8\right)
Factor out w.
a+b=10 ab=7\left(-8\right)=-56
Consider 7w^{2}+10w-8. Factor the expression by grouping. First, the expression needs to be rewritten as 7w^{2}+aw+bw-8. To find a and b, set up a system to be solved.
-1,56 -2,28 -4,14 -7,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -56.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
Calculate the sum for each pair.
a=-4 b=14
The solution is the pair that gives sum 10.
\left(7w^{2}-4w\right)+\left(14w-8\right)
Rewrite 7w^{2}+10w-8 as \left(7w^{2}-4w\right)+\left(14w-8\right).
w\left(7w-4\right)+2\left(7w-4\right)
Factor out w in the first and 2 in the second group.
\left(7w-4\right)\left(w+2\right)
Factor out common term 7w-4 by using distributive property.
w\left(7w-4\right)\left(w+2\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}