Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

7q^{2}=8
Add 8 to both sides. Anything plus zero gives itself.
q^{2}=\frac{8}{7}
Divide both sides by 7.
q=\frac{2\sqrt{14}}{7} q=-\frac{2\sqrt{14}}{7}
Take the square root of both sides of the equation.
7q^{2}-8=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
q=\frac{0±\sqrt{0^{2}-4\times 7\left(-8\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{0±\sqrt{-4\times 7\left(-8\right)}}{2\times 7}
Square 0.
q=\frac{0±\sqrt{-28\left(-8\right)}}{2\times 7}
Multiply -4 times 7.
q=\frac{0±\sqrt{224}}{2\times 7}
Multiply -28 times -8.
q=\frac{0±4\sqrt{14}}{2\times 7}
Take the square root of 224.
q=\frac{0±4\sqrt{14}}{14}
Multiply 2 times 7.
q=\frac{2\sqrt{14}}{7}
Now solve the equation q=\frac{0±4\sqrt{14}}{14} when ± is plus.
q=-\frac{2\sqrt{14}}{7}
Now solve the equation q=\frac{0±4\sqrt{14}}{14} when ± is minus.
q=\frac{2\sqrt{14}}{7} q=-\frac{2\sqrt{14}}{7}
The equation is now solved.