Solve for n
n=\frac{19\sqrt{14}}{7}+1\approx 11.155927193
n=-\frac{19\sqrt{14}}{7}+1\approx -9.155927193
Share
Copied to clipboard
7n^{2}-14n-715=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 7\left(-715\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -14 for b, and -715 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-14\right)±\sqrt{196-4\times 7\left(-715\right)}}{2\times 7}
Square -14.
n=\frac{-\left(-14\right)±\sqrt{196-28\left(-715\right)}}{2\times 7}
Multiply -4 times 7.
n=\frac{-\left(-14\right)±\sqrt{196+20020}}{2\times 7}
Multiply -28 times -715.
n=\frac{-\left(-14\right)±\sqrt{20216}}{2\times 7}
Add 196 to 20020.
n=\frac{-\left(-14\right)±38\sqrt{14}}{2\times 7}
Take the square root of 20216.
n=\frac{14±38\sqrt{14}}{2\times 7}
The opposite of -14 is 14.
n=\frac{14±38\sqrt{14}}{14}
Multiply 2 times 7.
n=\frac{38\sqrt{14}+14}{14}
Now solve the equation n=\frac{14±38\sqrt{14}}{14} when ± is plus. Add 14 to 38\sqrt{14}.
n=\frac{19\sqrt{14}}{7}+1
Divide 14+38\sqrt{14} by 14.
n=\frac{14-38\sqrt{14}}{14}
Now solve the equation n=\frac{14±38\sqrt{14}}{14} when ± is minus. Subtract 38\sqrt{14} from 14.
n=-\frac{19\sqrt{14}}{7}+1
Divide 14-38\sqrt{14} by 14.
n=\frac{19\sqrt{14}}{7}+1 n=-\frac{19\sqrt{14}}{7}+1
The equation is now solved.
7n^{2}-14n-715=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7n^{2}-14n-715-\left(-715\right)=-\left(-715\right)
Add 715 to both sides of the equation.
7n^{2}-14n=-\left(-715\right)
Subtracting -715 from itself leaves 0.
7n^{2}-14n=715
Subtract -715 from 0.
\frac{7n^{2}-14n}{7}=\frac{715}{7}
Divide both sides by 7.
n^{2}+\left(-\frac{14}{7}\right)n=\frac{715}{7}
Dividing by 7 undoes the multiplication by 7.
n^{2}-2n=\frac{715}{7}
Divide -14 by 7.
n^{2}-2n+1=\frac{715}{7}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-2n+1=\frac{722}{7}
Add \frac{715}{7} to 1.
\left(n-1\right)^{2}=\frac{722}{7}
Factor n^{2}-2n+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-1\right)^{2}}=\sqrt{\frac{722}{7}}
Take the square root of both sides of the equation.
n-1=\frac{19\sqrt{14}}{7} n-1=-\frac{19\sqrt{14}}{7}
Simplify.
n=\frac{19\sqrt{14}}{7}+1 n=-\frac{19\sqrt{14}}{7}+1
Add 1 to both sides of the equation.
x ^ 2 -2x -\frac{715}{7} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 7
r + s = 2 rs = -\frac{715}{7}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 1 - u s = 1 + u
Two numbers r and s sum up to 2 exactly when the average of the two numbers is \frac{1}{2}*2 = 1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(1 - u) (1 + u) = -\frac{715}{7}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{715}{7}
1 - u^2 = -\frac{715}{7}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{715}{7}-1 = -\frac{722}{7}
Simplify the expression by subtracting 1 on both sides
u^2 = \frac{722}{7} u = \pm\sqrt{\frac{722}{7}} = \pm \frac{\sqrt{722}}{\sqrt{7}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =1 - \frac{\sqrt{722}}{\sqrt{7}} = -9.156 s = 1 + \frac{\sqrt{722}}{\sqrt{7}} = 11.156
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}