7 g 5 \cdot ( 2 v - 7 ) = 4 v - 17 d u
Solve for d
\left\{\begin{matrix}d=\frac{49g_{5}+4v-14g_{5}v}{17u}\text{, }&u\neq 0\\d\in \mathrm{R}\text{, }&g_{5}=-\frac{4v}{7\left(7-2v\right)}\text{ and }v\neq \frac{7}{2}\text{ and }u=0\end{matrix}\right.
Solve for g_5
\left\{\begin{matrix}g_{5}=-\frac{17du-4v}{7\left(2v-7\right)}\text{, }&v\neq \frac{7}{2}\\g_{5}\in \mathrm{R}\text{, }&v=\frac{7}{2}\text{ and }d=\frac{14}{17u}\text{ and }u\neq 0\end{matrix}\right.
Share
Copied to clipboard
14g_{5}v-49g_{5}=4v-17du
Use the distributive property to multiply 7g_{5} by 2v-7.
4v-17du=14g_{5}v-49g_{5}
Swap sides so that all variable terms are on the left hand side.
-17du=14g_{5}v-49g_{5}-4v
Subtract 4v from both sides.
\left(-17u\right)d=14g_{5}v-4v-49g_{5}
The equation is in standard form.
\frac{\left(-17u\right)d}{-17u}=\frac{14g_{5}v-4v-49g_{5}}{-17u}
Divide both sides by -17u.
d=\frac{14g_{5}v-4v-49g_{5}}{-17u}
Dividing by -17u undoes the multiplication by -17u.
d=-\frac{14g_{5}v-4v-49g_{5}}{17u}
Divide 14g_{5}v-49g_{5}-4v by -17u.
14g_{5}v-49g_{5}=4v-17du
Use the distributive property to multiply 7g_{5} by 2v-7.
\left(14v-49\right)g_{5}=4v-17du
Combine all terms containing g_{5}.
\frac{\left(14v-49\right)g_{5}}{14v-49}=\frac{4v-17du}{14v-49}
Divide both sides by -49+14v.
g_{5}=\frac{4v-17du}{14v-49}
Dividing by -49+14v undoes the multiplication by -49+14v.
g_{5}=\frac{4v-17du}{7\left(2v-7\right)}
Divide 4v-17du by -49+14v.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}