Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

7a^{2}+\left(-6\sqrt{7}\right)a+85=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-6\sqrt{7}\right)±\sqrt{\left(-6\sqrt{7}\right)^{2}-4\times 7\times 85}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -6\sqrt{7} for b, and 85 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-6\sqrt{7}\right)±\sqrt{252-4\times 7\times 85}}{2\times 7}
Square -6\sqrt{7}.
a=\frac{-\left(-6\sqrt{7}\right)±\sqrt{252-28\times 85}}{2\times 7}
Multiply -4 times 7.
a=\frac{-\left(-6\sqrt{7}\right)±\sqrt{252-2380}}{2\times 7}
Multiply -28 times 85.
a=\frac{-\left(-6\sqrt{7}\right)±\sqrt{-2128}}{2\times 7}
Add 252 to -2380.
a=\frac{-\left(-6\sqrt{7}\right)±4\sqrt{133}i}{2\times 7}
Take the square root of -2128.
a=\frac{6\sqrt{7}±4\sqrt{133}i}{2\times 7}
The opposite of -6\sqrt{7} is 6\sqrt{7}.
a=\frac{6\sqrt{7}±4\sqrt{133}i}{14}
Multiply 2 times 7.
a=\frac{6\sqrt{7}+4\sqrt{133}i}{14}
Now solve the equation a=\frac{6\sqrt{7}±4\sqrt{133}i}{14} when ± is plus. Add 6\sqrt{7} to 4i\sqrt{133}.
a=\frac{3\sqrt{7}+2\sqrt{133}i}{7}
Divide 6\sqrt{7}+4i\sqrt{133} by 14.
a=\frac{-4\sqrt{133}i+6\sqrt{7}}{14}
Now solve the equation a=\frac{6\sqrt{7}±4\sqrt{133}i}{14} when ± is minus. Subtract 4i\sqrt{133} from 6\sqrt{7}.
a=\frac{-2\sqrt{133}i+3\sqrt{7}}{7}
Divide 6\sqrt{7}-4i\sqrt{133} by 14.
a=\frac{3\sqrt{7}+2\sqrt{133}i}{7} a=\frac{-2\sqrt{133}i+3\sqrt{7}}{7}
The equation is now solved.
7a^{2}+\left(-6\sqrt{7}\right)a+85=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7a^{2}+\left(-6\sqrt{7}\right)a+85-85=-85
Subtract 85 from both sides of the equation.
7a^{2}+\left(-6\sqrt{7}\right)a=-85
Subtracting 85 from itself leaves 0.
\frac{7a^{2}+\left(-6\sqrt{7}\right)a}{7}=-\frac{85}{7}
Divide both sides by 7.
a^{2}+\left(-\frac{6\sqrt{7}}{7}\right)a=-\frac{85}{7}
Dividing by 7 undoes the multiplication by 7.
a^{2}+\left(-\frac{6\sqrt{7}}{7}\right)a+\left(-\frac{3\sqrt{7}}{7}\right)^{2}=-\frac{85}{7}+\left(-\frac{3\sqrt{7}}{7}\right)^{2}
Divide -\frac{6\sqrt{7}}{7}, the coefficient of the x term, by 2 to get -\frac{3\sqrt{7}}{7}. Then add the square of -\frac{3\sqrt{7}}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\left(-\frac{6\sqrt{7}}{7}\right)a+\frac{9}{7}=\frac{-85+9}{7}
Square -\frac{3\sqrt{7}}{7}.
a^{2}+\left(-\frac{6\sqrt{7}}{7}\right)a+\frac{9}{7}=-\frac{76}{7}
Add -\frac{85}{7} to \frac{9}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{3\sqrt{7}}{7}\right)^{2}=-\frac{76}{7}
Factor a^{2}+\left(-\frac{6\sqrt{7}}{7}\right)a+\frac{9}{7}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{3\sqrt{7}}{7}\right)^{2}}=\sqrt{-\frac{76}{7}}
Take the square root of both sides of the equation.
a-\frac{3\sqrt{7}}{7}=\frac{2\sqrt{133}i}{7} a-\frac{3\sqrt{7}}{7}=-\frac{2\sqrt{133}i}{7}
Simplify.
a=\frac{3\sqrt{7}+2\sqrt{133}i}{7} a=\frac{-2\sqrt{133}i+3\sqrt{7}}{7}
Add \frac{3\sqrt{7}}{7} to both sides of the equation.