Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(7a^{2}-44a-1225)
Calculate 35 to the power of 2 and get 1225.
7a^{2}-44a-1225=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-44\right)±\sqrt{\left(-44\right)^{2}-4\times 7\left(-1225\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-44\right)±\sqrt{1936-4\times 7\left(-1225\right)}}{2\times 7}
Square -44.
a=\frac{-\left(-44\right)±\sqrt{1936-28\left(-1225\right)}}{2\times 7}
Multiply -4 times 7.
a=\frac{-\left(-44\right)±\sqrt{1936+34300}}{2\times 7}
Multiply -28 times -1225.
a=\frac{-\left(-44\right)±\sqrt{36236}}{2\times 7}
Add 1936 to 34300.
a=\frac{-\left(-44\right)±2\sqrt{9059}}{2\times 7}
Take the square root of 36236.
a=\frac{44±2\sqrt{9059}}{2\times 7}
The opposite of -44 is 44.
a=\frac{44±2\sqrt{9059}}{14}
Multiply 2 times 7.
a=\frac{2\sqrt{9059}+44}{14}
Now solve the equation a=\frac{44±2\sqrt{9059}}{14} when ± is plus. Add 44 to 2\sqrt{9059}.
a=\frac{\sqrt{9059}+22}{7}
Divide 44+2\sqrt{9059} by 14.
a=\frac{44-2\sqrt{9059}}{14}
Now solve the equation a=\frac{44±2\sqrt{9059}}{14} when ± is minus. Subtract 2\sqrt{9059} from 44.
a=\frac{22-\sqrt{9059}}{7}
Divide 44-2\sqrt{9059} by 14.
7a^{2}-44a-1225=7\left(a-\frac{\sqrt{9059}+22}{7}\right)\left(a-\frac{22-\sqrt{9059}}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{22+\sqrt{9059}}{7} for x_{1} and \frac{22-\sqrt{9059}}{7} for x_{2}.
7a^{2}-44a-1225
Calculate 35 to the power of 2 and get 1225.