Solve for a
a=-\frac{8b}{7-15b}
b\neq \frac{7}{15}
Solve for b
b=-\frac{7a}{8-15a}
a\neq \frac{8}{15}
Share
Copied to clipboard
7a+8b-15ab=0
Subtract 15ab from both sides.
7a-15ab=-8b
Subtract 8b from both sides. Anything subtracted from zero gives its negation.
\left(7-15b\right)a=-8b
Combine all terms containing a.
\frac{\left(7-15b\right)a}{7-15b}=-\frac{8b}{7-15b}
Divide both sides by 7-15b.
a=-\frac{8b}{7-15b}
Dividing by 7-15b undoes the multiplication by 7-15b.
7a+8b-15ab=0
Subtract 15ab from both sides.
8b-15ab=-7a
Subtract 7a from both sides. Anything subtracted from zero gives its negation.
\left(8-15a\right)b=-7a
Combine all terms containing b.
\frac{\left(8-15a\right)b}{8-15a}=-\frac{7a}{8-15a}
Divide both sides by 8-15a.
b=-\frac{7a}{8-15a}
Dividing by 8-15a undoes the multiplication by 8-15a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}