Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-a^{2}+7a+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-7±\sqrt{49-4\left(-1\right)\times 4}}{2\left(-1\right)}
Square 7.
a=\frac{-7±\sqrt{49+4\times 4}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-7±\sqrt{49+16}}{2\left(-1\right)}
Multiply 4 times 4.
a=\frac{-7±\sqrt{65}}{2\left(-1\right)}
Add 49 to 16.
a=\frac{-7±\sqrt{65}}{-2}
Multiply 2 times -1.
a=\frac{\sqrt{65}-7}{-2}
Now solve the equation a=\frac{-7±\sqrt{65}}{-2} when ± is plus. Add -7 to \sqrt{65}.
a=\frac{7-\sqrt{65}}{2}
Divide -7+\sqrt{65} by -2.
a=\frac{-\sqrt{65}-7}{-2}
Now solve the equation a=\frac{-7±\sqrt{65}}{-2} when ± is minus. Subtract \sqrt{65} from -7.
a=\frac{\sqrt{65}+7}{2}
Divide -7-\sqrt{65} by -2.
-a^{2}+7a+4=-\left(a-\frac{7-\sqrt{65}}{2}\right)\left(a-\frac{\sqrt{65}+7}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7-\sqrt{65}}{2} for x_{1} and \frac{7+\sqrt{65}}{2} for x_{2}.