Solve for a
a=-\frac{15c}{7}-76
Solve for c
c=\frac{-7a-532}{15}
Share
Copied to clipboard
7a+23+5\left(3c+100\right)=-9
Subtract 7 from 30 to get 23.
7a+23+15c+500=-9
Use the distributive property to multiply 5 by 3c+100.
7a+523+15c=-9
Add 23 and 500 to get 523.
7a+15c=-9-523
Subtract 523 from both sides.
7a+15c=-532
Subtract 523 from -9 to get -532.
7a=-532-15c
Subtract 15c from both sides.
7a=-15c-532
The equation is in standard form.
\frac{7a}{7}=\frac{-15c-532}{7}
Divide both sides by 7.
a=\frac{-15c-532}{7}
Dividing by 7 undoes the multiplication by 7.
a=-\frac{15c}{7}-76
Divide -532-15c by 7.
7a+23+5\left(3c+100\right)=-9
Subtract 7 from 30 to get 23.
7a+23+15c+500=-9
Use the distributive property to multiply 5 by 3c+100.
7a+523+15c=-9
Add 23 and 500 to get 523.
523+15c=-9-7a
Subtract 7a from both sides.
15c=-9-7a-523
Subtract 523 from both sides.
15c=-532-7a
Subtract 523 from -9 to get -532.
15c=-7a-532
The equation is in standard form.
\frac{15c}{15}=\frac{-7a-532}{15}
Divide both sides by 15.
c=\frac{-7a-532}{15}
Dividing by 15 undoes the multiplication by 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}