Solve for a
a=\frac{8c-2b}{7}
Solve for b
b=-\frac{7a}{2}+4c
Share
Copied to clipboard
7a-8c=-2b
Subtract 2b from both sides. Anything subtracted from zero gives its negation.
7a=-2b+8c
Add 8c to both sides.
7a=8c-2b
The equation is in standard form.
\frac{7a}{7}=\frac{8c-2b}{7}
Divide both sides by 7.
a=\frac{8c-2b}{7}
Dividing by 7 undoes the multiplication by 7.
2b-8c=-7a
Subtract 7a from both sides. Anything subtracted from zero gives its negation.
2b=-7a+8c
Add 8c to both sides.
2b=8c-7a
The equation is in standard form.
\frac{2b}{2}=\frac{8c-7a}{2}
Divide both sides by 2.
b=\frac{8c-7a}{2}
Dividing by 2 undoes the multiplication by 2.
b=-\frac{7a}{2}+4c
Divide -7a+8c by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}