Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(7-\sqrt{x}\right)^{2}=\left(\sqrt{x-21}\right)^{2}
Square both sides of the equation.
49-14\sqrt{x}+\left(\sqrt{x}\right)^{2}=\left(\sqrt{x-21}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-\sqrt{x}\right)^{2}.
49-14\sqrt{x}+x=\left(\sqrt{x-21}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
49-14\sqrt{x}+x=x-21
Calculate \sqrt{x-21} to the power of 2 and get x-21.
49-14\sqrt{x}+x-x=-21
Subtract x from both sides.
49-14\sqrt{x}=-21
Combine x and -x to get 0.
-14\sqrt{x}=-21-49
Subtract 49 from both sides.
-14\sqrt{x}=-70
Subtract 49 from -21 to get -70.
\sqrt{x}=\frac{-70}{-14}
Divide both sides by -14.
\sqrt{x}=5
Divide -70 by -14 to get 5.
x=25
Square both sides of the equation.
7-\sqrt{25}=\sqrt{25-21}
Substitute 25 for x in the equation 7-\sqrt{x}=\sqrt{x-21}.
2=2
Simplify. The value x=25 satisfies the equation.
x=25
Equation -\sqrt{x}+7=\sqrt{x-21} has a unique solution.