Solve for x
x=25
Graph
Share
Copied to clipboard
\left(7-\sqrt{x}\right)^{2}=\left(\sqrt{x-21}\right)^{2}
Square both sides of the equation.
49-14\sqrt{x}+\left(\sqrt{x}\right)^{2}=\left(\sqrt{x-21}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-\sqrt{x}\right)^{2}.
49-14\sqrt{x}+x=\left(\sqrt{x-21}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
49-14\sqrt{x}+x=x-21
Calculate \sqrt{x-21} to the power of 2 and get x-21.
49-14\sqrt{x}+x-x=-21
Subtract x from both sides.
49-14\sqrt{x}=-21
Combine x and -x to get 0.
-14\sqrt{x}=-21-49
Subtract 49 from both sides.
-14\sqrt{x}=-70
Subtract 49 from -21 to get -70.
\sqrt{x}=\frac{-70}{-14}
Divide both sides by -14.
\sqrt{x}=5
Divide -70 by -14 to get 5.
x=25
Square both sides of the equation.
7-\sqrt{25}=\sqrt{25-21}
Substitute 25 for x in the equation 7-\sqrt{x}=\sqrt{x-21}.
2=2
Simplify. The value x=25 satisfies the equation.
x=25
Equation -\sqrt{x}+7=\sqrt{x-21} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}