Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(7x-7\right)\left(x+1\right)=\left(x+1\right)^{2}
Use the distributive property to multiply 7 by x-1.
7x^{2}-7=\left(x+1\right)^{2}
Use the distributive property to multiply 7x-7 by x+1 and combine like terms.
7x^{2}-7=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
7x^{2}-7-x^{2}=2x+1
Subtract x^{2} from both sides.
6x^{2}-7=2x+1
Combine 7x^{2} and -x^{2} to get 6x^{2}.
6x^{2}-7-2x=1
Subtract 2x from both sides.
6x^{2}-7-2x-1=0
Subtract 1 from both sides.
6x^{2}-8-2x=0
Subtract 1 from -7 to get -8.
3x^{2}-4-x=0
Divide both sides by 2.
3x^{2}-x-4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-1 ab=3\left(-4\right)=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=-4 b=3
The solution is the pair that gives sum -1.
\left(3x^{2}-4x\right)+\left(3x-4\right)
Rewrite 3x^{2}-x-4 as \left(3x^{2}-4x\right)+\left(3x-4\right).
x\left(3x-4\right)+3x-4
Factor out x in 3x^{2}-4x.
\left(3x-4\right)\left(x+1\right)
Factor out common term 3x-4 by using distributive property.
x=\frac{4}{3} x=-1
To find equation solutions, solve 3x-4=0 and x+1=0.
\left(7x-7\right)\left(x+1\right)=\left(x+1\right)^{2}
Use the distributive property to multiply 7 by x-1.
7x^{2}-7=\left(x+1\right)^{2}
Use the distributive property to multiply 7x-7 by x+1 and combine like terms.
7x^{2}-7=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
7x^{2}-7-x^{2}=2x+1
Subtract x^{2} from both sides.
6x^{2}-7=2x+1
Combine 7x^{2} and -x^{2} to get 6x^{2}.
6x^{2}-7-2x=1
Subtract 2x from both sides.
6x^{2}-7-2x-1=0
Subtract 1 from both sides.
6x^{2}-8-2x=0
Subtract 1 from -7 to get -8.
6x^{2}-2x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\left(-8\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -2 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6\left(-8\right)}}{2\times 6}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-24\left(-8\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-2\right)±\sqrt{4+192}}{2\times 6}
Multiply -24 times -8.
x=\frac{-\left(-2\right)±\sqrt{196}}{2\times 6}
Add 4 to 192.
x=\frac{-\left(-2\right)±14}{2\times 6}
Take the square root of 196.
x=\frac{2±14}{2\times 6}
The opposite of -2 is 2.
x=\frac{2±14}{12}
Multiply 2 times 6.
x=\frac{16}{12}
Now solve the equation x=\frac{2±14}{12} when ± is plus. Add 2 to 14.
x=\frac{4}{3}
Reduce the fraction \frac{16}{12} to lowest terms by extracting and canceling out 4.
x=-\frac{12}{12}
Now solve the equation x=\frac{2±14}{12} when ± is minus. Subtract 14 from 2.
x=-1
Divide -12 by 12.
x=\frac{4}{3} x=-1
The equation is now solved.
\left(7x-7\right)\left(x+1\right)=\left(x+1\right)^{2}
Use the distributive property to multiply 7 by x-1.
7x^{2}-7=\left(x+1\right)^{2}
Use the distributive property to multiply 7x-7 by x+1 and combine like terms.
7x^{2}-7=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
7x^{2}-7-x^{2}=2x+1
Subtract x^{2} from both sides.
6x^{2}-7=2x+1
Combine 7x^{2} and -x^{2} to get 6x^{2}.
6x^{2}-7-2x=1
Subtract 2x from both sides.
6x^{2}-2x=1+7
Add 7 to both sides.
6x^{2}-2x=8
Add 1 and 7 to get 8.
\frac{6x^{2}-2x}{6}=\frac{8}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{2}{6}\right)x=\frac{8}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{1}{3}x=\frac{8}{6}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{3}x=\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{4}{3}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{4}{3}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{49}{36}
Add \frac{4}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=\frac{49}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{7}{6} x-\frac{1}{6}=-\frac{7}{6}
Simplify.
x=\frac{4}{3} x=-1
Add \frac{1}{6} to both sides of the equation.