Solve for x
x=\frac{\sqrt{849}-25}{14}\approx 0.295543183
x=\frac{-\sqrt{849}-25}{14}\approx -3.866971755
Graph
Share
Copied to clipboard
7x\left(x+3\right)=x-5x+8
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by x+3.
7x^{2}+21x=x-5x+8
Use the distributive property to multiply 7x by x+3.
7x^{2}+21x=-4x+8
Combine x and -5x to get -4x.
7x^{2}+21x+4x=8
Add 4x to both sides.
7x^{2}+25x=8
Combine 21x and 4x to get 25x.
7x^{2}+25x-8=0
Subtract 8 from both sides.
x=\frac{-25±\sqrt{25^{2}-4\times 7\left(-8\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 25 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 7\left(-8\right)}}{2\times 7}
Square 25.
x=\frac{-25±\sqrt{625-28\left(-8\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-25±\sqrt{625+224}}{2\times 7}
Multiply -28 times -8.
x=\frac{-25±\sqrt{849}}{2\times 7}
Add 625 to 224.
x=\frac{-25±\sqrt{849}}{14}
Multiply 2 times 7.
x=\frac{\sqrt{849}-25}{14}
Now solve the equation x=\frac{-25±\sqrt{849}}{14} when ± is plus. Add -25 to \sqrt{849}.
x=\frac{-\sqrt{849}-25}{14}
Now solve the equation x=\frac{-25±\sqrt{849}}{14} when ± is minus. Subtract \sqrt{849} from -25.
x=\frac{\sqrt{849}-25}{14} x=\frac{-\sqrt{849}-25}{14}
The equation is now solved.
7x\left(x+3\right)=x-5x+8
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by x+3.
7x^{2}+21x=x-5x+8
Use the distributive property to multiply 7x by x+3.
7x^{2}+21x=-4x+8
Combine x and -5x to get -4x.
7x^{2}+21x+4x=8
Add 4x to both sides.
7x^{2}+25x=8
Combine 21x and 4x to get 25x.
\frac{7x^{2}+25x}{7}=\frac{8}{7}
Divide both sides by 7.
x^{2}+\frac{25}{7}x=\frac{8}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{25}{7}x+\left(\frac{25}{14}\right)^{2}=\frac{8}{7}+\left(\frac{25}{14}\right)^{2}
Divide \frac{25}{7}, the coefficient of the x term, by 2 to get \frac{25}{14}. Then add the square of \frac{25}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{25}{7}x+\frac{625}{196}=\frac{8}{7}+\frac{625}{196}
Square \frac{25}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{25}{7}x+\frac{625}{196}=\frac{849}{196}
Add \frac{8}{7} to \frac{625}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{25}{14}\right)^{2}=\frac{849}{196}
Factor x^{2}+\frac{25}{7}x+\frac{625}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{14}\right)^{2}}=\sqrt{\frac{849}{196}}
Take the square root of both sides of the equation.
x+\frac{25}{14}=\frac{\sqrt{849}}{14} x+\frac{25}{14}=-\frac{\sqrt{849}}{14}
Simplify.
x=\frac{\sqrt{849}-25}{14} x=\frac{-\sqrt{849}-25}{14}
Subtract \frac{25}{14} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}