Solve for x
x=\frac{2-y}{3}
Solve for y
y=2-3x
Graph
Share
Copied to clipboard
21x-14+7y=0
Use the distributive property to multiply 7 by 3x-2.
21x+7y=14
Add 14 to both sides. Anything plus zero gives itself.
21x=14-7y
Subtract 7y from both sides.
\frac{21x}{21}=\frac{14-7y}{21}
Divide both sides by 21.
x=\frac{14-7y}{21}
Dividing by 21 undoes the multiplication by 21.
x=\frac{2-y}{3}
Divide 14-7y by 21.
21x-14+7y=0
Use the distributive property to multiply 7 by 3x-2.
-14+7y=-21x
Subtract 21x from both sides. Anything subtracted from zero gives its negation.
7y=-21x+14
Add 14 to both sides.
7y=14-21x
The equation is in standard form.
\frac{7y}{7}=\frac{14-21x}{7}
Divide both sides by 7.
y=\frac{14-21x}{7}
Dividing by 7 undoes the multiplication by 7.
y=2-3x
Divide -21x+14 by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}