Factor
7\left(y+2\right)\left(y+4\right)y^{2}
Evaluate
7\left(y+2\right)\left(y+4\right)y^{2}
Graph
Share
Copied to clipboard
7\left(y^{4}+6y^{3}+8y^{2}\right)
Factor out 7.
y^{2}\left(y^{2}+6y+8\right)
Consider y^{4}+6y^{3}+8y^{2}. Factor out y^{2}.
a+b=6 ab=1\times 8=8
Consider y^{2}+6y+8. Factor the expression by grouping. First, the expression needs to be rewritten as y^{2}+ay+by+8. To find a and b, set up a system to be solved.
1,8 2,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 8.
1+8=9 2+4=6
Calculate the sum for each pair.
a=2 b=4
The solution is the pair that gives sum 6.
\left(y^{2}+2y\right)+\left(4y+8\right)
Rewrite y^{2}+6y+8 as \left(y^{2}+2y\right)+\left(4y+8\right).
y\left(y+2\right)+4\left(y+2\right)
Factor out y in the first and 4 in the second group.
\left(y+2\right)\left(y+4\right)
Factor out common term y+2 by using distributive property.
7y^{2}\left(y+2\right)\left(y+4\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}