Solve for y
y=-\sqrt{2}i\approx -0-1.414213562i
y=\sqrt{2}i\approx 1.414213562i
Share
Copied to clipboard
7y^{2}=4-18
Subtract 18 from both sides.
7y^{2}=-14
Subtract 18 from 4 to get -14.
y^{2}=\frac{-14}{7}
Divide both sides by 7.
y^{2}=-2
Divide -14 by 7 to get -2.
y=\sqrt{2}i y=-\sqrt{2}i
The equation is now solved.
7y^{2}+18-4=0
Subtract 4 from both sides.
7y^{2}+14=0
Subtract 4 from 18 to get 14.
y=\frac{0±\sqrt{0^{2}-4\times 7\times 14}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 7\times 14}}{2\times 7}
Square 0.
y=\frac{0±\sqrt{-28\times 14}}{2\times 7}
Multiply -4 times 7.
y=\frac{0±\sqrt{-392}}{2\times 7}
Multiply -28 times 14.
y=\frac{0±14\sqrt{2}i}{2\times 7}
Take the square root of -392.
y=\frac{0±14\sqrt{2}i}{14}
Multiply 2 times 7.
y=\sqrt{2}i
Now solve the equation y=\frac{0±14\sqrt{2}i}{14} when ± is plus.
y=-\sqrt{2}i
Now solve the equation y=\frac{0±14\sqrt{2}i}{14} when ± is minus.
y=\sqrt{2}i y=-\sqrt{2}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}