Solve for y
\left\{\begin{matrix}y=\frac{7x^{2}-20z^{4}+3}{12x}\text{, }&x\neq 0\\y\in \mathrm{R}\text{, }&x=0\text{ and }\frac{\sqrt[4]{1500}}{10}\geq \frac{20^{\frac{3}{4}}\sqrt[4]{3}}{20}\text{ and }|z|=\frac{\sqrt[4]{1500}}{10}\end{matrix}\right.
Solve for x
x=\frac{\sqrt{36y^{2}+140z^{4}-21}+6y}{7}
x=\frac{-\sqrt{36y^{2}+140z^{4}-21}+6y}{7}\text{, }|z|>\frac{20^{\frac{3}{4}}\sqrt[4]{3}}{20}\text{ or }|y|\geq \frac{\sqrt{21-140z^{4}}}{6}
Share
Copied to clipboard
7x^{2}-12yx+3=20z^{4}
Multiply 6 and 2 to get 12.
-12yx+3=20z^{4}-7x^{2}
Subtract 7x^{2} from both sides.
-12yx=20z^{4}-7x^{2}-3
Subtract 3 from both sides.
\left(-12x\right)y=20z^{4}-7x^{2}-3
The equation is in standard form.
\frac{\left(-12x\right)y}{-12x}=\frac{20z^{4}-7x^{2}-3}{-12x}
Divide both sides by -12x.
y=\frac{20z^{4}-7x^{2}-3}{-12x}
Dividing by -12x undoes the multiplication by -12x.
y=\frac{-\frac{5z^{4}}{3}+\frac{1}{4}}{x}+\frac{7x}{12}
Divide 20z^{4}-7x^{2}-3 by -12x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}