Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-6x-144=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 7\left(-144\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -6 for b, and -144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 7\left(-144\right)}}{2\times 7}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-28\left(-144\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-6\right)±\sqrt{36+4032}}{2\times 7}
Multiply -28 times -144.
x=\frac{-\left(-6\right)±\sqrt{4068}}{2\times 7}
Add 36 to 4032.
x=\frac{-\left(-6\right)±6\sqrt{113}}{2\times 7}
Take the square root of 4068.
x=\frac{6±6\sqrt{113}}{2\times 7}
The opposite of -6 is 6.
x=\frac{6±6\sqrt{113}}{14}
Multiply 2 times 7.
x=\frac{6\sqrt{113}+6}{14}
Now solve the equation x=\frac{6±6\sqrt{113}}{14} when ± is plus. Add 6 to 6\sqrt{113}.
x=\frac{3\sqrt{113}+3}{7}
Divide 6+6\sqrt{113} by 14.
x=\frac{6-6\sqrt{113}}{14}
Now solve the equation x=\frac{6±6\sqrt{113}}{14} when ± is minus. Subtract 6\sqrt{113} from 6.
x=\frac{3-3\sqrt{113}}{7}
Divide 6-6\sqrt{113} by 14.
x=\frac{3\sqrt{113}+3}{7} x=\frac{3-3\sqrt{113}}{7}
The equation is now solved.
7x^{2}-6x-144=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}-6x-144-\left(-144\right)=-\left(-144\right)
Add 144 to both sides of the equation.
7x^{2}-6x=-\left(-144\right)
Subtracting -144 from itself leaves 0.
7x^{2}-6x=144
Subtract -144 from 0.
\frac{7x^{2}-6x}{7}=\frac{144}{7}
Divide both sides by 7.
x^{2}-\frac{6}{7}x=\frac{144}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{6}{7}x+\left(-\frac{3}{7}\right)^{2}=\frac{144}{7}+\left(-\frac{3}{7}\right)^{2}
Divide -\frac{6}{7}, the coefficient of the x term, by 2 to get -\frac{3}{7}. Then add the square of -\frac{3}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6}{7}x+\frac{9}{49}=\frac{144}{7}+\frac{9}{49}
Square -\frac{3}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6}{7}x+\frac{9}{49}=\frac{1017}{49}
Add \frac{144}{7} to \frac{9}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{7}\right)^{2}=\frac{1017}{49}
Factor x^{2}-\frac{6}{7}x+\frac{9}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{7}\right)^{2}}=\sqrt{\frac{1017}{49}}
Take the square root of both sides of the equation.
x-\frac{3}{7}=\frac{3\sqrt{113}}{7} x-\frac{3}{7}=-\frac{3\sqrt{113}}{7}
Simplify.
x=\frac{3\sqrt{113}+3}{7} x=\frac{3-3\sqrt{113}}{7}
Add \frac{3}{7} to both sides of the equation.