Solve for x
x=-1
x=7
Graph
Share
Copied to clipboard
x^{2}-6x-7=0
Divide both sides by 7.
a+b=-6 ab=1\left(-7\right)=-7
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
a=-7 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x^{2}-7x\right)+\left(x-7\right)
Rewrite x^{2}-6x-7 as \left(x^{2}-7x\right)+\left(x-7\right).
x\left(x-7\right)+x-7
Factor out x in x^{2}-7x.
\left(x-7\right)\left(x+1\right)
Factor out common term x-7 by using distributive property.
x=7 x=-1
To find equation solutions, solve x-7=0 and x+1=0.
7x^{2}-42x-49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 7\left(-49\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -42 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-42\right)±\sqrt{1764-4\times 7\left(-49\right)}}{2\times 7}
Square -42.
x=\frac{-\left(-42\right)±\sqrt{1764-28\left(-49\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-42\right)±\sqrt{1764+1372}}{2\times 7}
Multiply -28 times -49.
x=\frac{-\left(-42\right)±\sqrt{3136}}{2\times 7}
Add 1764 to 1372.
x=\frac{-\left(-42\right)±56}{2\times 7}
Take the square root of 3136.
x=\frac{42±56}{2\times 7}
The opposite of -42 is 42.
x=\frac{42±56}{14}
Multiply 2 times 7.
x=\frac{98}{14}
Now solve the equation x=\frac{42±56}{14} when ± is plus. Add 42 to 56.
x=7
Divide 98 by 14.
x=-\frac{14}{14}
Now solve the equation x=\frac{42±56}{14} when ± is minus. Subtract 56 from 42.
x=-1
Divide -14 by 14.
x=7 x=-1
The equation is now solved.
7x^{2}-42x-49=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}-42x-49-\left(-49\right)=-\left(-49\right)
Add 49 to both sides of the equation.
7x^{2}-42x=-\left(-49\right)
Subtracting -49 from itself leaves 0.
7x^{2}-42x=49
Subtract -49 from 0.
\frac{7x^{2}-42x}{7}=\frac{49}{7}
Divide both sides by 7.
x^{2}+\left(-\frac{42}{7}\right)x=\frac{49}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-6x=\frac{49}{7}
Divide -42 by 7.
x^{2}-6x=7
Divide 49 by 7.
x^{2}-6x+\left(-3\right)^{2}=7+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=7+9
Square -3.
x^{2}-6x+9=16
Add 7 to 9.
\left(x-3\right)^{2}=16
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-3=4 x-3=-4
Simplify.
x=7 x=-1
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}