Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-2x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 7\left(-3\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 7\left(-3\right)}}{2\times 7}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-28\left(-3\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-2\right)±\sqrt{4+84}}{2\times 7}
Multiply -28 times -3.
x=\frac{-\left(-2\right)±\sqrt{88}}{2\times 7}
Add 4 to 84.
x=\frac{-\left(-2\right)±2\sqrt{22}}{2\times 7}
Take the square root of 88.
x=\frac{2±2\sqrt{22}}{2\times 7}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{22}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{22}+2}{14}
Now solve the equation x=\frac{2±2\sqrt{22}}{14} when ± is plus. Add 2 to 2\sqrt{22}.
x=\frac{\sqrt{22}+1}{7}
Divide 2+2\sqrt{22} by 14.
x=\frac{2-2\sqrt{22}}{14}
Now solve the equation x=\frac{2±2\sqrt{22}}{14} when ± is minus. Subtract 2\sqrt{22} from 2.
x=\frac{1-\sqrt{22}}{7}
Divide 2-2\sqrt{22} by 14.
x=\frac{\sqrt{22}+1}{7} x=\frac{1-\sqrt{22}}{7}
The equation is now solved.
7x^{2}-2x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}-2x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
7x^{2}-2x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
7x^{2}-2x=3
Subtract -3 from 0.
\frac{7x^{2}-2x}{7}=\frac{3}{7}
Divide both sides by 7.
x^{2}-\frac{2}{7}x=\frac{3}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{2}{7}x+\left(-\frac{1}{7}\right)^{2}=\frac{3}{7}+\left(-\frac{1}{7}\right)^{2}
Divide -\frac{2}{7}, the coefficient of the x term, by 2 to get -\frac{1}{7}. Then add the square of -\frac{1}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{3}{7}+\frac{1}{49}
Square -\frac{1}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{22}{49}
Add \frac{3}{7} to \frac{1}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{7}\right)^{2}=\frac{22}{49}
Factor x^{2}-\frac{2}{7}x+\frac{1}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{7}\right)^{2}}=\sqrt{\frac{22}{49}}
Take the square root of both sides of the equation.
x-\frac{1}{7}=\frac{\sqrt{22}}{7} x-\frac{1}{7}=-\frac{\sqrt{22}}{7}
Simplify.
x=\frac{\sqrt{22}+1}{7} x=\frac{1-\sqrt{22}}{7}
Add \frac{1}{7} to both sides of the equation.