Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-2x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 7\times 3}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 7\times 3}}{2\times 7}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-28\times 3}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-2\right)±\sqrt{4-84}}{2\times 7}
Multiply -28 times 3.
x=\frac{-\left(-2\right)±\sqrt{-80}}{2\times 7}
Add 4 to -84.
x=\frac{-\left(-2\right)±4\sqrt{5}i}{2\times 7}
Take the square root of -80.
x=\frac{2±4\sqrt{5}i}{2\times 7}
The opposite of -2 is 2.
x=\frac{2±4\sqrt{5}i}{14}
Multiply 2 times 7.
x=\frac{2+4\sqrt{5}i}{14}
Now solve the equation x=\frac{2±4\sqrt{5}i}{14} when ± is plus. Add 2 to 4i\sqrt{5}.
x=\frac{1+2\sqrt{5}i}{7}
Divide 2+4i\sqrt{5} by 14.
x=\frac{-4\sqrt{5}i+2}{14}
Now solve the equation x=\frac{2±4\sqrt{5}i}{14} when ± is minus. Subtract 4i\sqrt{5} from 2.
x=\frac{-2\sqrt{5}i+1}{7}
Divide 2-4i\sqrt{5} by 14.
x=\frac{1+2\sqrt{5}i}{7} x=\frac{-2\sqrt{5}i+1}{7}
The equation is now solved.
7x^{2}-2x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}-2x+3-3=-3
Subtract 3 from both sides of the equation.
7x^{2}-2x=-3
Subtracting 3 from itself leaves 0.
\frac{7x^{2}-2x}{7}=-\frac{3}{7}
Divide both sides by 7.
x^{2}-\frac{2}{7}x=-\frac{3}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{2}{7}x+\left(-\frac{1}{7}\right)^{2}=-\frac{3}{7}+\left(-\frac{1}{7}\right)^{2}
Divide -\frac{2}{7}, the coefficient of the x term, by 2 to get -\frac{1}{7}. Then add the square of -\frac{1}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{7}x+\frac{1}{49}=-\frac{3}{7}+\frac{1}{49}
Square -\frac{1}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{7}x+\frac{1}{49}=-\frac{20}{49}
Add -\frac{3}{7} to \frac{1}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{7}\right)^{2}=-\frac{20}{49}
Factor x^{2}-\frac{2}{7}x+\frac{1}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{7}\right)^{2}}=\sqrt{-\frac{20}{49}}
Take the square root of both sides of the equation.
x-\frac{1}{7}=\frac{2\sqrt{5}i}{7} x-\frac{1}{7}=-\frac{2\sqrt{5}i}{7}
Simplify.
x=\frac{1+2\sqrt{5}i}{7} x=\frac{-2\sqrt{5}i+1}{7}
Add \frac{1}{7} to both sides of the equation.