Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7\left(x^{2}-4x+5\right)
Factor out 7. Polynomial x^{2}-4x+5 is not factored since it does not have any rational roots.
7x^{2}-28x+35=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 7\times 35}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 7\times 35}}{2\times 7}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-28\times 35}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-28\right)±\sqrt{784-980}}{2\times 7}
Multiply -28 times 35.
x=\frac{-\left(-28\right)±\sqrt{-196}}{2\times 7}
Add 784 to -980.
7x^{2}-28x+35
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.